Fabrication into useful forms
Preparation and sizing
All abrasives, with the exception of the naturally appearing fine powders such as talc, must be crushed to the particle size required for use. Sizes in use vary from 4 grit, which measures about 6 millimetres (1/4 inch) in diameter, to as fine as 900 grit, which measures about six microns (0.00024 inch) or about one-tenth the thickness of a human hair. In some cases, even finer powders are required when used for the polishing of scratch-free surfaces on high-quality optical lenses and mirrors for high-power telescopes.
For the coarser sizes the crushed grain is measured by a series of test screens as established in most countries by government standards. For sizes 240 grit and smaller, the size of the grains is usually measured by a settling rate or sedimentation test.
Crushing methods have a significant effect on the cutting action and the strength of abrasive grains. Heavy crushing pressures, for example, tend to create splintery, sharp, and weak grains. These penetrate easily and remove material at a fast rate, and their cutting edges break down easily for resharpening. This shape is required in many coated abrasive products.
When a grinding wheel or coated abrasive belt is to be used to grind away large amounts of material under heavy pressures, a more regularly shaped, strong abrasive grain stands up longer. The sharp edge is not as necessary because heavy pressures are used that effect the penetration of the abrasive into the material being ground.
Abrasive-product manufacture
Grinding wheels
The most important abrasive product manufactured is the grinding wheel. Made of abrasive grain and a binder, or “bond,” it is a self-sharpening cutting tool. As the grains on the periphery become dull, they are shed from the surface of the grinding wheel, and fresh, sharp cutting edges are exposed. The ability to resharpen is controlled by the nature of the bond used and the ratio of abrasive to bond, measured by volume.
Forming and firing
In the manufacture of grinding wheels, abrasives of the proper size and bonding materials are weighed and mixed together in a power mixing machine. When thoroughly mixed, measured amounts of the abrasive and bond mixture are evenly distributed in steel molds. The mold is placed in a powerful hydraulic press, and the mixture is compressed to the desired wheel size, allowing some oversize in dimensions for finishing operations. Pressures vary with wheel size and may be upwards of several hundred tons. Some shaving and shaping of the wheels is done before they are baked or fired.
The majority of grinding wheels made have a vitreous, ceramic bond, made of clays and feldspars. The so-called vitrified wheel is fired in high-temperature kilns at temperatures of 1,260° C (2,300° F). Electric-, oil-, and gas-fired kilns are used. The length of the “burn” varies with wheel size and can be as long as two weeks.
The remaining 35–40 percent of the grinding wheels manufactured have organic-type bonds using resins, rubber, or shellac as the bonding material. These wheels are baked at temperatures of between 150° and 200° C (300° and 400° F). The lower temperature permits the inclusion of steel rings, molded-in threaded bushings, or fibreglass reinforcements, which become baked into the wheel and serve to make it more resistant to breakage from side pressure. The bushings help to hold the wheel in place on certain grinding machines.
Organic wheels can be made much thinner than vitrified wheels, and they are used in place of metal saw blades for cutting a great variety of materials.
Truing, grading, and testing
Nearly all grinding wheels must be finished after they have been baked or fired. In a process called truing, the wheels are cut to final size, and the outside glazed layers resulting from the kiln are removed, making the sides of the wheel parallel and the size of the arbor hole accurate; at the same time the working surface of the wheel is sharpened. Wheels are trued by using conical steel cutters, by rubbing in beds of steel shot, and by grinding with grinding wheels.
Grading of wheels assures that they have the correct resistance to wear. Grade or hardness, determined by the amount of bond, permits the grinding wheel to keep itself sharp and free-cutting in a variety of conditions. Grinding wheels used for heavy grinding operations are “harder” and are made with greater amounts of bond, retaining the abrasive particles longer under severe conditions such as those found in steel mills and foundries. In the tool room where industrial cutting tools are sharpened, softer wheels, with less bond per unit of abrasive, are required, so that, as soon as the abrasive grains start to dull and the possibility develops of building up heat in the sensitive cutting tool being ground, the wheel will resharpen and shed the dulled grains.
Finally, grinding wheels are checked for balance to assure that they will run without vibration. Grinding wheels six inches in diameter and larger are usually speed-tested. The wheel is rotated at a speed at least 50 percent greater than the maximum allowable operating speed. This is a nondestructive measure of the wheel’s bursting strength.
The same basic processes are used in the manufacture of abrasive bricks, sticks, and formed shapes. These are used as rubbing blocks, sharpening stones, honing stones, and shaped abrasive mediums for tumbling or mass finishing.