The LCDs used in projection systems are typically small reflective or transmissive panels illuminated by a powerful arc lamp source. A series of lenses magnifies the reflected or transmitted image and casts it onto a screen. In front-projection systems the LCD is situated on the same side of the screen as the viewer, while in rear-projection systems the screen is illuminated from behind. Projectors of higher cost and performance may use three separate LCD panels, forming separate red, green, and blue images that combine to form a coloured image on the screen.

Smectic LCDs

The increasing demand for video displays has placed a growing emphasis on the switching speed of liquid crystals. This has led to the development of devices employing smectic liquid crystals, certain of which have a faster electro-optical response than nematic liquid crystals. The surface-stabilized ferroelectric liquid crystal (SSFLC) display is currently the most developed smectic device. In it the liquid crystal molecules are arranged in layers perpendicular to the substrate planes, which are separated by one or two micrometres, and within the layers the molecules are tilted, as illustrated in the figure. The host liquid crystal contains optically active molecules, and a subtle consequence of the optical activity and the tilt of the molecules is the appearance of a permanent charge separation, or ferroelectric dipole, analogous to the ferromagnetic dipole of a magnet. The direction of this dipole is perpendicular to the tilt direction of the molecules and in the plane of the layers. Thus, there is a permanent charge separation across the liquid crystal layer in the SSFLC, and its sign is directly coupled to the tilt direction of the molecules. An applied voltage of the correct sign can reverse the direction of this dipole in tens of microseconds and hence reverse the tilt direction of the molecules. The corresponding change in optical properties can cause a change from light to dark when one or more polarizers are used.

SSFLC devices have been commercialized for large passive-matrix displays, but their cost and complexity have prevented them from making any significant impact on the market. Small transmissive and reflective active-matrix SSFLC displays, however, show some promise for use as elements in projection systems or as viewfinders in digital cameras. Their fast response allows them to be used in time-sequential colour systems, in which costly colour filters are replaced by a coloured backlight that flashes red, green, and blue in rapid succession (about 100 cycles per second). For example, the liquid crystal can be switched to a transmissive state during the red and green periods and to a nontransmissive state during the blue period, with the result that the eye sees an average of red and green light, or the colour yellow.

David Dunmur Harry G. Walton
Britannica Chatbot logo

Britannica Chatbot

Chatbot answers are created from Britannica articles using AI. This is a beta feature. AI answers may contain errors. Please verify important information using Britannica articles. About Britannica AI.

LED

electronics
Also known as: light-emissive diode, light-emitting diode
In full:
light-emitting diode
Related Topics:
electro-optical transmitter
semiconductor diode

News

LED, in electronics, a semiconductor device that emits infrared or visible light when charged with an electric current. LED displays began to be used for consumer electronic devices starting in 1968, when Hewlett-Packard (HP) introduced the first LED display. Visible LED lights are used in many electronic devices as indicator lamps, car brake lights, and as alphanumeric displays or even full-color posters on billboards and signs. Infrared LEDs are employed in autofocus cameras and television remote controls and also as light sources in fiber-optic telecommunication systems.

The familiar but now outdated light bulb gave off light through incandescence, a phenomenon in which the heating of a wire filament by an electric current causes the wire to emit photons, the basic energy packets of light. Incandescent light bulbs were gradually phased out in the United States starting in 2007 with the Energy Independence and Security Act. They were fully banned in the European Union (EU) starting in 2012. In 2023 the Biden administration’s ban on the manufacture and sale of incandescent bulbs took effect.

LEDs, on the other hand, operate by electroluminescence, in which the emission of photons is caused by electronic excitation of a material. The material used most often in LEDs is gallium arsenide, though there are many variations on this basic compound, such as aluminum gallium arsenide or aluminum gallium indium phosphide. These compounds are members of the “III-V” group of semiconductors—that is, compounds made of elements listed in columns III and V of the periodic table. Varying the precise composition of the semiconductor can alter the wavelength (and therefore the color) of the emitted light.

LED emission is generally in the visible part of the light spectrum (i.e., with wavelengths from 0.4 to 0.7 micrometer) or in the near-infrared section (with wavelengths between 0.78 and 2.5 micrometers). The brightness of the light observed from an LED depends on the power emitted by the LED and on the relative sensitivity of the eye at the emitted wavelength. Maximum sensitivity occurs at 0.555 micrometer, which is in the yellow-orange and green region. The applied voltage in most LEDs is quite low, about 2.0 volts. The current depends on the application and ranges from a few milliamperes to several hundred milliamperes.

The term diode refers to the twin-terminal structure of the light-emitting device. In a flashlight, for example, a wire filament is connected to a battery through two terminals, one (the anode) bearing the negative electric charge and the other (the cathode) bearing the positive charge. In LEDs, as in other semiconductor devices such as transistors, the “terminals” are actually two semiconductor materials of different composition and electronic properties brought together to form a junction. In one material (the negative, or n-type, semiconductor) the charge carriers are electrons, and in the other (the positive, or p-type, semiconductor) the charge carriers are “holes” created by the absence of electrons. Under the influence of an electric field (supplied by a battery, for instance, when the LED is switched on), current can be made to flow across the p-n junction, providing the electronic excitation that causes the material to emanate light.

In a typical LED structure the clear epoxy dome serves as a structural element to hold the lead frame together, as a lens to focus the light, and as a refractive index match to permit more light to escape from the LED chip. The chip, typically 250 × 250 × 250 micrometers in dimension, is mounted in a reflecting cup formed in the lead frame. The p-n-type GaP:N layers represent nitrogen added to gallium phosphide to give green emission; the p-n-type GaAsP:N layers represent nitrogen added to gallium arsenide phosphide to give orange and yellow emission; and the p-type GaP:Zn,O layer represents zinc and oxygen added to gallium phosphide to give red emission. Two further enhancements, developed in the 1990s, are LEDs based on aluminum gallium indium phosphide, which emit light efficiently from green to red-orange, and also blue-emitting LEDs based on silicon carbide or gallium nitride. Blue LEDs can be combined on a cluster with other LEDs to give all colors, including white, for full-color moving displays.

Any LED can be used as a light source for a short-range fiber-optic transmission system—that is, over a distance of less than 100 meters (330 feet). For long-range fiber optics, however, the emission properties of the light source are selected to match the transmission properties of the optical fiber, and in this case the infrared LEDs are a better match than the visible-light LEDs. Glass optical fibers suffer their lowest transmission losses in the infrared region at wavelengths of 1.3 and 1.55 micrometers. To match these transmission properties, LEDs are employed that are made of gallium indium arsenide phosphide layered on a substrate of indium phosphide. The exact composition of the material may be adjusted to emit energy precisely at 1.3 or 1.55 micrometers.

Are you a student?
Get a special academic rate on Britannica Premium.
The Editors of Encyclopaedia BritannicaThis article was most recently revised and updated by Tara Ramanathan.
Britannica Chatbot logo

Britannica Chatbot

Chatbot answers are created from Britannica articles using AI. This is a beta feature. AI answers may contain errors. Please verify important information using Britannica articles. About Britannica AI.