Since cellulose fibre is a major constituent of the stems of plants, a vast number of plants represent potential sources of paper; many of these have been pulped experimentally. A rather substantial number of plant sources have been used commercially, at least on a small scale and at various times and places. Indeed, the use of cereal straws for paper predates the use of wood pulp and is widely practiced today throughout the world, although on a relatively small scale of production. Because many parts of the world are deficient in forests, the development of the paper industry in these areas appears to depend to a considerable degree upon the use of annual plants and agricultural fibres.

Nonwoody plant stems differ from wood in containing less total cellulose, less lignin, and more of other materials. This means that pulps of high cellulose content (high purity) are produced in relatively low yield, whereas pulps of high yield contain high proportions of other materials. Papers made from these pulps without admixture of other fibre tend to be dense and stiff, with low tear resistance and low opacity.

The morphology (form and structure) of the cells of annual plants also differs considerably from wood. Whereas the nonfibrous (parenchyma) cells of coniferous wood constitute a minor proportion of the wood substance, in annual plants this cell type is a major constituent. As hardwoods also often contain considerable amounts of nonfibrous cells, there is a closer resemblance between hardwood pulps and pulps from annual plants.

The preferred pulping reagents for nonwood plants are the alkalis: caustic soda, lime and soda ash, and kraft liquor (caustic soda and sodium sulfide). A characteristic of the pulping of annual plants, compared with wood, is the milder treatment necessary to produce pulp. Straw, for example, may be pulped with milk of lime in a spherical digester at a steam pressure of about 2 kilograms per square centimetre (25 pounds per square inch) and a cooking time of 8 to 10 hours. The amount of lime used is about 10 percent of the amount of dry fibre.

In the United States straw pulp was formerly used extensively for corrugating medium (i.e., sheet fluted to form the inner ply of corrugated board). Since then, the use of straw pulp for corrugating medium has been replaced by semichemical hardwood pulp. Straw pulp is still made in several European and Asiatic countries on a small scale.

The residue from the crushing of sugarcane, called bagasse, contains about 65 percent fibre, 25 percent pith cells, and 10 percent water solubles. An essential element in the conversion of bagasse to a satisfactory paper is the mechanical removal of a substantial proportion of the pith prior to the pulping operation. Pulping may be carried out either with soda or with kraft cooking liquor and by batch or continuous systems. Bagasse fibre averages 1.5 to 2 millimetres (0.06 to 0.08 inch) in length and is relatively fine.

The use of bagasse is substantial in several Latin American countries and in the Middle East. The utilization of bagasse for paper in all the sugar-producing countries that are deficient in forest resources is a practical step.

A desert plant of the Mediterranean area, especially in southern Spain and northern Africa, esparto grass has a higher cellulose content than most nonwood plants, with greater uniformity of fibre size and shape. The use of esparto for papermaking was developed in Great Britain in 1856. Consumption rose steadily until the mid-1950s but since has steadily declined.

Esparto held its own against the competition with wood pulp for some time because of its favourable papermaking properties. The stock forms well on a paper machine because of free drainage and uniform fibre length, compared with rag or wood pulp. Esparto printing papers possess good resilience in contact with the printing plate, have good opacity and smoothness, and are relatively lint-free. Another important characteristic of papers made from esparto is dimensional stability with changes in moisture content.

Botanically, bamboo is classified as a grass, even though it attains a considerable size and the stems or culms resemble wood in hardness and density. It was demonstrated many years ago that satisfactory pulp could be made from bamboo.

Because of the abundance of bamboo in Southeast Asia, where increased production of paper is greatly needed, much interest has been displayed in bamboo pulp development. The growing cycle of bamboo is favourable, for the culms can be harvested without destroying the root system. Under ideal conditions of soil fertility and moisture, an established stand of bamboo probably would produce more fibre per hectare (or acre) per year than any other plant. Wild bamboo, however, is difficult to harvest and transport economically; so far, the interest in it has not been translated into any large-scale production. Pulp mills make use of bamboo in India, Thailand, and the Philippines. Considerable quantities of bamboo pulp are said to be made in China, but details are lacking.

Flax, hemp, jute, and kenaf are characterized by a high proportion of long, flexible bast fibres that are readily separated and purified from the other materials in the plant. Consequently, such fibres have long been used for textiles and rope making. Most of this fibre reaching the paper industry in the past has been secondary or waste fibre. It has been highly prized because of the strength and durability it imparts to such products as tags, abrasive paper (sandpaper), cover stock, and other heavy-duty paper. It is also used for duplicating and manifold paper, in which extremely light weight must be combined with exceptional strength. Flax is grown expressly for high-grade cigarette paper. Experimental quantities of kenaf have been grown and made into various grades of paper.

Synthetic fibres

The development and use of a great variety of man-made fibres have created a revolution in the textile industry in recent decades. It has been predicted that similar widespread use of synthetic fibres may eventually occur in the paper industry. Active interest has been evident in recent years, both on the part of fibre producers and of paper manufacturers. Many specialty paper products are currently being made from synthetic fibres.

The advantages of synthetic or man-made fibres in papermaking can be summarized as follows:

Whereas natural cellulose fibres vary considerably in size and shape, synthetic fibres can be made uniform and of selected length and diameter. Long fibres, for example, are necessary in producing strong, durable papers. There are limitations, however, to the length of synthetic fibres that may be formed from suspension in water because of their tendency to tangle and to rope together. Even so, papers have been made experimentally with fibres several times longer than those typical of wood pulp; these papers have improved strength and softness properties.

Natural cellulose fibres have limited resistance to chemical attack and exposure to heat. Because synthetic fibre papers can be made resistant to strong acids, they are useful for chemical filtration. Paper can even be made from glass fibre, and such paper has great resistance to both heat and chemicals.

The natural cellulose fibres of ordinary paper are hygroscopic; i.e., they absorb water from the air and reach an equilibrium depending upon the relative humidity. The moisture content of paper, therefore, changes with atmospheric conditions. These changes cause swelling and shrinkage of fibres, accounting for the puckering and curling of papers. Synthetic fibres not subject to these changes can be used to produce dimensionally stable papers.

The cheapest man-made fibre, rayon, costs from three to six times as much as an equivalent amount of wood pulp, whereas most of the true synthetics, such as the polyamides (nylon), polyesters (Dacron, Dynel), acrylics (Orlon, Creslan, Acrilan), and glass, cost from 10 to 20 times as much. This difference in cost does not preclude the use of existing synthetics, but it limits their use to special items in which the extra qualities will justify the additional cost. The cost factor is increased by the absence in most synthetic fibres of the bonding property of natural cellulose fibres. When beaten in water, natural fibres swell and cement together as they dry. Paper made from synthetics must be bonded by the addition of an adhesive, requiring an additional manufacturing step.

There is a distinct similarity between synthetic fibre “papers” and the class of sheet materials known as nonwovens. As a step in the manufacture of yarn, staple fibres are carded (i.e., separated and combed) to form a uniform, lightweight, and fragile web. Subsequently, this web is gathered together to form a strand or sliver, which is drawn and spun into yarn. If several of these flat webs, however, are laminated together and bonded with adhesive, a nonwoven fabric that has properties resembling both paper and cloth results. In this area it is difficult to draw a clear distinction between what is paper and what is cloth. Processes are now available to form sheet material both by the dry forming method and by the water forming or paper system. When textile-type fibres are formed into webs by either of these processes, the resulting products have properties that enable them to compete in some fields traditionally served by textiles.

Processes for preparing pulp

Mechanical or groundwood pulp is made by subjecting wood to an abrading action, either by pressing the wood against a revolving grinding stone or by passing chips through a mill. The wood fibres are separated and, to a considerable degree, fragmented.

Chemical wood pulp is made by cooking wood chips with chemical solutions in digesters operated at elevated temperature and pressure. The chemicals used are (1) sulfite salts with an excess of sulfur dioxide and (2) caustic soda and sodium sulfide (the kraft process). The lignin of the wood is made soluble, and the fibres separate as whole fibres. Further purification can be accomplished by bleaching. Chemical wood pulp that is purified both by bleaching and by alkaline extraction is called alpha or dissolving pulp. It is used for specialty papers, for rayon and cellulose film production, and for cellulose derivatives, such as nitrate and acetate.

Semichemical pulp is made by treating wood chips with sulfite or alkali in amounts and under conditions that soften the lignin but dissolve only part of it. The softened chips are then defibred.

Mechanical or groundwood pulp

Pulpwood may arrive at the mill as bolts 1.2 metres (4 feet) in length or as full-length logs. The logs are sawn to shorter length, and the bolts are tumbled in large revolving drums to remove the bark. The debarked wood is next sent to grinders, where its moisture content is important for ease of grinding and quality of pulp. Moisture content should be at least 30 percent and preferably 45 to 50 percent. Wood of low moisture content is presoaked in a pond or sprayed with water.

Early grinders employed round slabs of natural sandstone 69 centimetres (27 inches) wide and 137 centimetres (54 inches) in diameter, often directly connected to water wheels, to produce five or six tons of pulp per day. The wood was hand-loaded into the grinders.

Today’s much larger pulp grinders are usually powered by electric motors and automatically loaded. In a recently built mill, each grinder is gear-connected to a 10,000-horsepower motor; the pulpstone, at 360 revolutions per minute, can handle wood 1.5 to 1.6 metres (60 to 64 inches) long. Hydraulic cylinders produce a pressure of 14 kilograms per square centimetre (200 pounds per square inch) against the stone face. Pulp production from each stone is 130 to 150 tons every 24 hours.

The first artificial grinding stone was produced in 1924; since that time, artificial stones have replaced natural sandstone. Silicon carbide and aluminum oxide are the abrasives used in the manufacture of pulpstones. The abrasive material is broken down into a mixture of sizes that are screened to give fractions of uniform grain size. The abrasive grains are mixed with binder and fired at high temperature (2,300° C or 4,200° F) in the form of segments that are assembled to form the abrasive surface of the pulpstone.

The pulp stock flows from the grinder pit to a series of rifflers and screens, which separate the heavy foreign material and pieces of unfibred wood (shives), knots, bark, and the like.

Most groundwood pulp flows directly to an adjacent paper mill for use as stock. When shipped, it is formed into a sheet on a cylindrical vacuum filter. The sheets are pressed in a hydraulic press to a moisture content of about 50 percent, and the pressed sheets are formed into bales.

An important test to control the quality of groundwood pulp is freeness: the readiness with which water drains from and through a wet pad of pulp. Groundwood pulps are much less “free” than chemical wood pulps.

In groundwood pulp, the fibres are fragmented, and there is considerable debris (fines). Also, groundwood contains all the chemical constituents of wood, including lignin, hemicellulose, resin, and various colouring materials. This means that papers containing groundwood are subject to discoloration (yellowing) upon exposure to light and heat and after aging. The yellowing of newspaper and much book paper is an example of this. Because groundwood fibres are relatively short and have only a moderate ability to bond to each other, papers containing them do not have high strength. On the other hand, papers containing groundwood have good opacity; they are bulky and have good printing qualities.

Groundwood pulp does not have a high whiteness, being limited in this quality by the colour of the wood from which it is made. Although often bleached with peroxide or hydrosulfite to improve whiteness, it does not equal pure cellulose.

Chemical wood pulp

The effect of sulfurous acid (H2SO3) in softening and defibring wood was observed by B.C. Tilghman, a U.S. chemist, as early as 1857. Several years later he renewed his experiments and, in 1867, was granted a patent for making paper pulp from vegetable material. He used high temperature and pressure and observed that the presence of a base such as calcium was important in preventing burned or discoloured batches of pulp. His work, however, did not result in commercial use of the process.

During the 1870s the sulfite process for pulping wood was the subject of experimental work in Sweden, England, Germany, and Austria. Within a few years the process was in commercial operation both in Europe and in North America. For many decades the sulfite process was the leading process for the pulping of wood. Since 1940, however, the kraft process has taken a predominant position, and sulfite mills are no longer being constructed.

Sulfite cooking liquor, as it is pumped to the digester at the start of a “cook,” consists of free sulfur dioxide dissolved in water at a concentration of 4 to 8 percent, together with from 2 to 3 percent in the form of bisulfite. Sulfite digestion is normally carried out as a batch process in a pressure vessel, a steel shell with an acid-resistant lining of ceramic tile set in acid-proof cement or stainless steel. A common digester measures five metres (16 feet) in diameter and 15 metres (50 feet) in height, with a domed top and a conical bottom. It has a capacity of 12 to 15 tons of pulp per batch. Digesters with a capacity of up to 35 tons have been constructed. Pulp mills normally have a series of digesters arranged in a digester building.

After the blow valve is closed at the bottom, the wood chips are allowed to flow into the top opening and are distributed to fill the digester completely. Hot acid from the accumulator is pumped into the digester unit, completely filling it and replacing the air. Steam provides the heat.

At the end of the cook, the contents of the digester are blown to a blowpit by rapid opening of the bottom valve. The violence of the blow defibres the cooked chips.

From 1 to 6 percent of the digester charge is undesirable material such as knots, uncooked chips, dirt, bark, fibre bundles, and shives. The screen room separates the unwanted particles from accepted fibre, normally on the basis of particle size; there is an increasing use of the centrifugal principle, which separates particles on the basis of density.

The sulfite cooking liquor does not “cook out” or disintegrate bark and other foreign material to the same degree as kraft liquor (described below), and hence more care must be used in selecting and cleaning wood chips for sulfite.

In the conventional sulfite cook using softwood, the typical yield is 44 to 46 percent, based on wood and with a lignin content of 2 to 5 percent. At that point, a relatively light-coloured pulp with good strength properties is obtained, suitable for use in the unbleached state, especially in mixture with groundwood for a variety of printing papers. For pulps in which high brightness (whiteness) is desired, the residual lignin is removed by bleaching.

In 1851 paper pulp was experimentally produced from wood by cooking it with caustic soda at elevated temperature and pressure. Although this soda process attained commercial importance, soda pulp was of relatively low strength; and use of the process was limited to manufacturing filler pulps from hardwood, which were then mixed with a stronger fibre for printing papers. Because this process consumed relatively large quantities of soda, papermakers devised methods for recovering soda from the spent cooking liquor; recovery has remained an integral part of alkaline pulping ever since.

In 1884 a German chemist, Carl F. Dahl, employed sodium sulfate in place of soda ash in a soda pulping recovery system. This substitution produced a cooking liquor that contained sodium sulfide along with caustic soda. Pulp so produced was stronger than soda pulp and was called “kraft” pulp, so named from the German and Swedish word for “strong.” The process has also been termed the sulfate process because of the use of sodium sulfate (salt cake) in the chemical makeup. Sulfate, however, is not an active ingredient of the cooking liquor.

Many soda mills were converted to kraft because of the greater strength of the pulp. Kraft pulp, however, was dark in colour and difficult to bleach; for many years the growth of the process was slow because of its limitation to papers in which colour and brightness were unimportant. In the 1930s, bleached kraft became commercially important with the discovery of new bleaching techniques. The availability of pulp of high whiteness and the expanding demand for unbleached kraft in packaging resulted in rapid growth of the process, making kraft the predominant wood-pulping method.

Paper produced by the kraft process is particularly strong and durable. Acceptable pulp can be produced in the kraft process from many species of wood not suitable for sulfite. The various pines, for example, especially southern yellow pine, contain large amounts of wood resin or pitch. Chemically altered and dissolved in the kraft process, this material is removed from the pulp and becomes a valuable by-product. The wood pitch is not removed to the same degree in the sulfite process, and hence high-resin woods, such as pine, are not suitable.

In the cooking operation, wood chips are prepared and fed to the digesting equipment by methods previously described. The cooking vessels are still widely used as batch digesters. In the past 25 years, however, continuous digesters have been developed and are being widely adopted by the kraft industry. These huge cylindrical towers, more than 60 metres (200 feet) in height, have a number of zones or compartments. Wood chips and cooking liquor are fed into the top and injected into successive zones of high pressure and temperature, where impregnation and cooking takes place as the chips progress downward. Additional zones wash the spent liquor from the chips. Continuous digesters are capable of producing 600 tons of pulp per day.

In batch cooking, after the digester is charged with chips, a mixture of “black liquor,” the spent liquor from a previous cook, and “white liquor,” a solution of sodium hydroxide and sodium sulfide from the chemical recovery plant, is pumped in. The digester is heated either by direct injection of steam or by the circulation of the cooking liquor through a heat exchanger.

After completion of the cook, the spent cooking liquor is washed from the pulp; the latter is then screened and sent to the bleach plant or directly to the paper mill if it is to be used unbleached. Some of the spent liquor (black liquor) is used for an admixture with white liquor to charge new cooks; the remainder is sent to the recovery plant to reconstitute cooking chemicals.

All the sodium used for digestion is contained in the spent liquor, mostly in the form of sodium salts and sodium organic derivatives. The amount of sodium present is such that its reuse is economically necessary.

Semichemical pulp

For semichemical pulping, wood preparation and chipping are essentially the same as that for other wood-pulping processes. The chips are steeped and impregnated with inorganic chemical solutions similar to those used for full chemical pulping, but in smaller amounts and with less severe conditions. Probably the most common is the solution of sodium sulfite in the neutral range, between acidity and alkalinity. Other agents used in some cases are acid sulfite, caustic soda, and kraft cooking liquor.

After the impregnation operation, the chips are fed into one or more disk refiners (described below) in series. The attrition action of refiners reduces the softened chips to pulp. The yield of semichemical pulp based on wood is 66 to 90 percent. The higher fibre yield pulps are usually termed chemimechanical pulps.

The semichemical pulps have chemical and strength properties intermediate between softwood, groundwood, and full chemical pulps. These are used in a wide range of papers and boards. The major tonnage of semichemical pulps goes into the light board, termed corrugating medium, which is fluted to serve as the interior layer of corrugated boxboard in heavy-duty containers. Stiffness and adequate strength are the important properties. Semichemical pulp is used in many low-cost printing papers.