print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://www.britannica.com/technology/ship
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Like tankers, container ships are characterized by the absence of cargo handling gear, in their case reflecting the usual practice of locating the container-handling cranes at shore terminals rather than aboard ship. Unlike the tanker, container ships require large hatches in the deck for stowing the cargo, which consists of standardized containers usually either 20 or 40 feet in length. Belowdecks, the ship is equipped with a cellular grid of compartments opening to the weather deck; these are designed to receive the containers and hold them in place until unloading is achieved at the port of destination. The ship is filled to the deck level with containers, the hatches are closed, and one or two layers of containers, depending upon the size and stability of the ship, are loaded on the hatch covers on deck.

In a few hours the ship can be filled with containers destined for another port and can be under way. An additional economy is the low cost of the crew of the ship while it is in port awaiting loading or unloading. Further, because each ship can make more trips than before, container fleets require fewer vessels. There is also less pilferage and, hence, lower insurance rates and, finally, the assurance to the shipper that the shipment will not require any further handling until it arrives at its destination.

Among the disadvantages is the fact that each ship does not carry quite as much total volume of cargo with containers as with regular bulk stowage, because the containers themselves take space and, since they are square in shape, do not fill in all the nooks and crannies created by a ship-shaped hull form. Further, a rather substantial capital investment is needed in port facilities, such as special berths, weight-handling equipment, storage areas, and links to land transportation, all of which must be made by the ports that receive or ship via container ship if its full potential savings are to be realized.

Container ships are moderate-size merchant vessels built for speeds of greater than about 20 knots. Much use is made of small, compact, diesel power plants to provide more space for containers. Special equipment includes mooring winches to ensure accurate positioning of the ship under cranes in port and special tanks to list (tip) and trim (level) the ship to permit a symmetrical loading or unloading without excessive list or trim.

Barge-carrying ships

An extension of the container ship concept is the barge-carrying ship. In this concept, the container is itself a floating vessel, usually about 60 feet long by about 30 feet wide, which is loaded aboard the ship in one of two ways: either it is lifted over the stern by a high-capacity shipboard gantry crane, or the ship is partially submerged so that the barges can be floated aboard via a gate in the stern.

Roll-on/roll-off ships

Roll-on/roll-off ships, designed for the carriage of wheeled cargo, are always distinguished by large doors in the hull and often by external ramps that fold down to allow rolling between pier and ship. Because vehicles of all kinds have some empty space—and in addition require large clearance spaces between adjacent vehicles—they constitute a low-density cargo (a high “stowage factor”) that demands large hull volume. The general outline of the ship, in view of its relatively low density of cargo, is rather “boxy,” with a high freeboard and a high deckhouse covering much of the ship’s superstructure, to afford more parking decks. To ensure stability, fixed ballast is usually included in these ships, along with water ballast to adjust load and stability. The engineering plants are commonly twin engines of compact variety, such as geared diesel, and they are arranged so that the engine spaces are at either side of the ship, allowing valuable free space between them for vehicle passage.

Dry-bulk ships

Designed for the carriage of ore, coal, grain, and the like, dry-bulk ships bear a superficial likeness to container ships since they often have no cargo handling gear and, unlike the tanker, have large cargo hatches. The absence of containers on deck is a decisive indicator that a vessel is a dry-bulk ship, but an observer may be deceived by the occasional sight of a dry-bulk ship carrying containers and other nonbulk cargo on deck. An incontrovertible indicator is the self-unloading gear, usually a large horizontal boom of open trusswork, carried by some bulk ships. On the Great Lakes of North America this gear is a near-universal feature of ships built since 1960.

General cargo ship

The once-ubiquitous general cargo ship continues to be built, though in modest numbers. Those built in the last third of the 20th century are usually fitted with deck cranes, which give them an appearance distinct from the more-specialized ship types.

James Joseph Stilwell John B. Woodward