In electron-beam welding, the workpiece is bombarded with a dense stream of high-velocity electrons. The energy of these electrons is converted to heat upon impact. A beam-focusing device is included, and the workpiece is usually placed in an evacuated chamber to allow uninterrupted electron travel. Heating is so intense that the beam almost instantaneously vaporizes a hole through the joint. Extremely narrow deep-penetration welds can be produced using very high voltages—up to 150 kilovolts. Workpieces are positioned accurately by an automatic traverse device; for example, a weld in material 13 mm (0.5 inch) thick would only be 1 mm (0.04 inch) wide. Typical welding speeds are 125 to 250 cm (50 to 100 inches) per minute.

Cold welding

Cold welding, the joining of materials without the use of heat, can be accomplished simply by pressing them together. Surfaces have to be well prepared, and pressure sufficient to produce 35 to 90 percent deformation at the joint is necessary, depending on the material. Lapped joints in sheets and cold-butt welding of wires constitute the major applications of this technique. Pressure can be applied by punch presses, rolling stands, or pneumatic tooling. Pressures of 1,400,000 to 2,800,000 kilopascals (200,000 to 400,000 pounds per square inch) are needed to produce a joint in aluminum; almost all other metals need higher pressures.

Friction welding

In friction welding two workpieces are brought together under load with one part rapidly revolving. Frictional heat is developed at the interface until the material becomes plastic, at which time the rotation is stopped and the load is increased to consolidate the joint. A strong joint results with the plastic deformation, and in this sense the process may be considered a variation of pressure welding. The process is self-regulating, for, as the temperature at the joint rises, the friction coefficient is reduced and overheating cannot occur. The machines are almost like lathes in appearance. Speed, force, and time are the main variables. The process has been automated for the production of axle casings in the automotive industry.

Laser welding

Laser welding is accomplished when the light energy emitted from a laser source is focused upon a workpiece to fuse materials together. The limited availability of lasers of sufficient power for most welding purposes has so far restricted its use in this area. Another difficulty is that the speed and the thickness that can be welded are controlled not so much by power but by the thermal conductivity of the metals and by the avoidance of metal vaporization at the surface. Particular applications of the process with very thin materials up to 0.5 mm (0.02 inch) have, however, been very successful. The process is useful in the joining of miniaturized electrical circuitry.

Diffusion bonding

This type of bonding relies on the effect of applied pressure at an elevated temperature for an appreciable period of time. Generally, the pressure applied must be less than that necessary to cause 5 percent deformation so that the process can be applied to finished machine parts. The process has been used most extensively in the aerospace industries for joining materials and shapes that otherwise could not be made—for example, multiple-finned channels and honeycomb construction. Steel can be diffusion bonded at above 1,000 °C (1,800 °F) in a few minutes.

Ultrasonic welding

Ultrasonic joining is achieved by clamping the two pieces to be welded between an anvil and a vibrating probe or sonotrode. The vibration raises the temperature at the interface and produces the weld. The main variables are the clamping force, power input, and welding time. A weld can be made in 0.005 second on thin wires and up to 1 second with material 1.3 mm (0.05 inch) thick. Spot welds and continuous seam welds are made with good reliability. Applications include extensive use on lead bonding to integrated circuitry, transistor canning, and aluminum can bodies.

Explosive welding

Explosive welding takes place when two plates are impacted together under an explosive force at high velocity. The lower plate is laid on a firm surface, such as a heavier steel plate. The upper plate is placed carefully at an angle of approximately 5° to the lower plate with a sheet of explosive material on top. The charge is detonated from the hinge of the two plates, and a weld takes place in microseconds by very rapid plastic deformation of the material at the interface. A completed weld has the appearance of waves at the joint caused by a jetting action of metal between the plates.

Weldability of metals

Carbon and low-alloy steels are by far the most widely used materials in welded construction. Carbon content largely determines the weldability of plain carbon steels; at above 0.3 percent carbon some precautions have to be taken to ensure a sound joint. Low-alloy steels are generally regarded as those having a total alloying content of less than 6 percent. There are many grades of steel available, and their relative weldability varies.

Aluminum and its alloys are also generally weldable. A very tenacious oxide film on aluminum tends to prevent good metal flow, however, and suitable fluxes are used for gas welding. Fusion welding is more effective with alternating current when using the gas-tungsten arc process to enable the oxide to be removed by the arc action.

Copper and its alloys are weldable, but the high thermal conductivity of copper makes welding difficult. Refractory metals such as zirconium, niobium, molybdenum, tantalum, and tungsten are usually welded by the gas-tungsten arc process. Nickel is the most compatible material for joining, is weldable to itself, and is extensively used in dissimilar metal welding of steels, stainlesses, and copper alloys.

This article was most recently revised and updated by Erik Gregersen.
Britannica Chatbot logo

Britannica Chatbot

Chatbot answers are created from Britannica articles using AI. This is a beta feature. AI answers may contain errors. Please verify important information using Britannica articles. About Britannica AI.

metallurgy, art and science of extracting metals from their ores and modifying the metals for use. Metallurgy customarily refers to commercial as opposed to laboratory methods. It also concerns the chemical, physical, and atomic properties and structures of metals and the principles whereby metals are combined to form alloys.

History of metallurgy

The present-day use of metals is the culmination of a long path of development extending over approximately 6,500 years. It is generally agreed that the first known metals were gold, silver, and copper, which occurred in the native or metallic state, of which the earliest were in all probability nuggets of gold found in the sands and gravels of riverbeds. Such native metals became known and were appreciated for their ornamental and utilitarian values during the latter part of the Stone Age.

Earliest development

Gold can be agglomerated into larger pieces by cold hammering, but native copper cannot, and an essential step toward the Metal Age was the discovery that metals such as copper could be fashioned into shapes by melting and casting in molds; among the earliest known products of this type are copper axes cast in the Balkans in the 4th millennium bce. Another step was the discovery that metals could be recovered from metal-bearing minerals. These had been collected and could be distinguished on the basis of colour, texture, weight, and flame colour and smell when heated. The notably greater yield obtained by heating native copper with associated oxide minerals may have led to the smelting process, since these oxides are easily reduced to metal in a charcoal bed at temperatures in excess of 700 °C (1,300 °F), as the reductant, carbon monoxide, becomes increasingly stable. In order to effect the agglomeration and separation of melted or smelted copper from its associated minerals, it was necessary to introduce iron oxide as a flux. This further step forward can be attributed to the presence of iron oxide gossan minerals in the weathered upper zones of copper sulfide deposits.

Bronze

In many regions, copper-arsenic alloys, of superior properties to copper in both cast and wrought form, were produced in the next period. This may have been accidental at first, owing to the similarity in colour and flame colour between the bright green copper carbonate mineral malachite and the weathered products of such copper-arsenic sulfide minerals as enargite, and it may have been followed later by the purposeful selection of arsenic compounds based on their garlic odour when heated.

Arsenic contents varied from 1 to 7 percent, with up to 3 percent tin. Essentially arsenic-free copper alloys with higher tin content—in other words, true bronze—seem to have appeared between 3000 and 2500 bce, beginning in the Tigris-Euphrates delta. The discovery of the value of tin may have occurred through the use of stannite, a mixed sulfide of copper, iron, and tin, although this mineral is not as widely available as the principal tin mineral, cassiterite, which must have been the eventual source of the metal. Cassiterite is strikingly dense and occurs as pebbles in alluvial deposits together with arsenopyrite and gold; it also occurs to a degree in the iron oxide gossans mentioned above.

While there may have been some independent development of bronze in varying localities, it is most likely that the bronze culture spread through trade and the migration of peoples from the Middle East to Egypt, Europe, and possibly China. In many civilizations the production of copper, arsenical copper, and tin bronze continued together for some time. The eventual disappearance of copper-arsenic alloys is difficult to explain. Production may have been based on minerals that were not widely available and became scarce, but the relative scarcity of tin minerals did not prevent a substantial trade in that metal over considerable distances. It may be that tin bronzes were eventually preferred owing to the chance of contracting arsenic poisoning from fumes produced by the oxidation of arsenic-containing minerals.

As the weathered copper ores in given localities were worked out, the harder sulfide ores beneath were mined and smelted. The minerals involved, such as chalcopyrite, a copper-iron sulfide, needed an oxidizing roast to remove sulfur as sulfur dioxide and yield copper oxide. This not only required greater metallurgical skill but also oxidized the intimately associated iron, which, combined with the use of iron oxide fluxes and the stronger reducing conditions produced by improved smelting furnaces, led to higher iron contents in the bronze.

Are you a student?
Get a special academic rate on Britannica Premium.

Iron

It is not possible to mark a sharp division between the Bronze Age and the Iron Age. Small pieces of iron would have been produced in copper smelting furnaces as iron oxide fluxes and iron-bearing copper sulfide ores were used. In addition, higher furnace temperatures would have created more strongly reducing conditions (that is to say, a higher carbon monoxide content in the furnace gases). An early piece of iron from a trackway in the province of Drenthe, Netherlands, has been dated to 1350 bce, a date normally taken as the Middle Bronze Age for this area. In Anatolia, on the other hand, iron was in use as early as 2000 bce. There are also occasional references to iron in even earlier periods, but this material was of meteoric origin.

Once a relationship had been established between the new metal found in copper smelts and the ore added as flux, the operation of furnaces for the production of iron alone naturally followed. Certainly, by 1400 bce in Anatolia, iron was assuming considerable importance, and by 1200–1000 bce it was being fashioned on quite a large scale into weapons, initially dagger blades. For this reason, 1200 bce has been taken as the beginning of the Iron Age. Evidence from excavations indicates that the art of iron making originated in the mountainous country to the south of the Black Sea, an area dominated by the Hittites. Later the art apparently spread to the Philistines, for crude furnaces dating from 1200 bce have been unearthed at Gerar, together with a number of iron objects.

Smelting of iron oxide with charcoal demanded a high temperature, and, since the melting temperature of iron at 1,540 °C (2,800 °F) was not attainable then, the product was merely a spongy mass of pasty globules of metal intermingled with a semiliquid slag. This product, later known as bloom, was hardly usable as it stood, but repeated reheating and hot hammering eliminated much of the slag, creating wrought iron, a much better product.

The properties of iron are much affected by the presence of small amounts of carbon, with large increases in strength associated with contents of less than 0.5 percent. At the temperatures then attainable—about 1,200 °C (2,200 °F)—reduction by charcoal produced an almost pure iron, which was soft and of limited use for weapons and tools, but when the ratio of fuel to ore was increased and furnace drafting improved with the invention of better bellows, more carbon was absorbed by the iron. This resulted in blooms and iron products with a range of carbon contents, making it difficult to determine the period in which iron may have been purposely strengthened by carburizing, or reheating the metal in contact with excess charcoal.

Carbon-containing iron had the further great advantage that, unlike bronze and carbon-free iron, it could be made still harder by quenching—i.e., rapid cooling by immersion in water. There is no evidence for the use of this hardening process during the early Iron Age, so that it must have been either unknown then or not considered advantageous, in that quenching renders iron very brittle and has to be followed by tempering, or reheating at a lower temperature, to restore toughness. What seems to have been established early on was a practice of repeated cold forging and annealing at 600–700 °C (1,100–1,300 °F), a temperature naturally achieved in a simple fire. This practice is common in parts of Africa even today.

By 1000 bce iron was beginning to be known in central Europe. Its use spread slowly westward. Iron making was fairly widespread in Great Britain at the time of the Roman invasion in 55 bce. In Asia iron was also known in ancient times, in China by about 700 bce.

Britannica Chatbot logo

Britannica Chatbot

Chatbot answers are created from Britannica articles using AI. This is a beta feature. AI answers may contain errors. Please verify important information using Britannica articles. About Britannica AI.