- Latin:
- “upright man”
- Related Topics:
- Java man
- Peking man
- Solo man
- Lantian man
- Sinanthropus
- On the Web:
- University of Northern Colorado - UNCOpen - The Cognitive Evolution of Homo erectus (PDF) (Mar. 19, 2025)
At Zhoukoudian the remains of H. erectus were found in cave and fissure deposits. Although this does not prove that these hominins were habitual cave dwellers, the additional evidence of associated remains—such as stone, charred animal bones, collections of seeds, and what could be ancient hearths and charcoal—all points to H. erectus as having spent periods of time in the grottoes of Zhoukoudian. On the other hand, the remains of Lantian, Trinil, Sangiran, and Mojokerto, as well as Tighenif, Olduvai, and Koobi Fora, were all found in open sites, sometimes in stream gravels and clays, sometimes in river sandstones, and sometimes in lake beds. These suggest that H. erectus also lived in open encampments along the banks of streams or on the shores of lakes and also that proximity to water was crucial to survival. These presumed campsites were revealed by excavation, and they contain abundant stone implements and stone chips that surely resulted from human manufacture. Fractured and partly burned bones of animals found at the sites indicate that H. erectus may have either hunted or scavenged meat.
There is little doubt that mastery of fire was an important factor in colonizing cooler regions. Indeed, this discovery may have sped the migrations of ancient humans into the chilly, often glaciated expanses of prehistoric Europe. Sooner or later humans started cooking their food, thus reducing the work demanded of their teeth. This in turn may have played an important part in minimizing the evolutionary advantage of big teeth, since cooked food needs far less cutting, tearing, and grinding than does raw food. This relaxation of the selective pressure favouring the survival of people with large, strong teeth may have led directly to a reduction in the size of the teeth—an important consideration given that this is one of the features distinguishing Homo sapiens from H. erectus.
Zhoukoudian has been cited as providing signs that humans had mastery of fire 400,000 years ago. Investigators reported ash and charcoal accumulations that resemble hearths, and it is possible that H. erectus used fire in the caves for warmth and for preparing food. However, more recent research shows that at least some of the “ash” is instead sediment probably deposited by water. Nevertheless, burned bones are present, and these relics may still speak to the ability of the Zhoukoudian inhabitants to roast meat.
Other signs of the culture of H. erectus are implements found in the same deposits as their bones. Chopping tools and flakes made from split pebbles characterize both the Zhoukoudian and Dmanisi deposits; both are members of a so-called Chopper chopping-tool family of industries. At Tighenif in northwestern Africa, H. erectus was found in association with totally different kinds of stone implements; these comprise double-edged hand axes and scrapers that have been characterized as representing what archaeologists call an early Acheulean industry. This is part of the great Acheulean hand-ax industrial complex, remnants of which are found widely spread over large parts of Europe and Africa. An Acheulean industry is known also from Olduvai Gorge, as is a local, more ancient form of stone chopper manufacture known as the Oldowan industry, but the exact cultural associations of these stone tools with African H. erectus (as exemplified by OH 9) are uncertain.
Hence, H. erectus has been found associated in some parts of the world with a Chopper chopping-tool tradition and in other places with an Acheulean double-edged hand-ax industrial complex. Numerous animal bones occur also with the remains of H. erectus, and sometimes these bones seem to have been deliberately broken or charred. From this evidence it is sometimes inferred that H. erectus was a hunter. The brain, body size, and manufactured equipment of H. erectus were so superior to those of Australopithecus and H. habilis that it is highly probable that food-collecting techniques, including hunting, were also better. Many scientists hold that Australopithecus and H. habilis were more scavengers than hunters, perhaps at best opportunists who seized their chance when a weak, young, sick, or aged animal crossed their paths. Indeed, many of the animal bones found in australopith deposits are of juvenile and old individuals. Although larger animal bones have been recovered from H. habilis deposits, these have exhibited tooth marks of nonhuman predators as well as cut marks. H. erectus, on the other hand, seems to have been a confirmed hunter whose prey included animals of all age groups.

It can credibly be supposed that, as with present-day hunters such as the African San (Bushmen) and the Australian Aboriginals, meat from the hunt formed only a part of the diet of H. erectus. Other juicy morsels may have been furnished by snakes, birds and their eggs, locusts, scorpions, centipedes, tortoises, mice and other rodents, hedgehogs, fish, and crustaceans. Even children could have caught many of these—as they still do in Africa’s Kalahari Desert today, before being allowed to accompany the older men on the hunt. Vegetable food—such as fleshy leaves, fruits, nuts, roots, and tubers—also must have been important in the diet of H. erectus. Accumulations of hackberry seeds, for example, were found in the Zhoukoudian cave deposits. There seems to be little doubt that H. erectus was omnivorous, for such a diet is the most opportunistic of all, and modern humans are the most opportunistic of all living primates. H. erectus was probably one of the earliest of the great opportunists, and it is likely that this attribute endowed the species with adaptability and evolutionary flexibility.
Another question that may be asked about H. erectus culture is whether there is any evidence of ritual. There is no sign that they buried their dead: no complete burials have been found, nor have graves, grave goods, or red ochre (a mineral used as a paint by later forms of hominins), either on or around any bones. Cannibalism was once inferred from the Ngandong (Solo) and Zhoukoudian finds, but little credible evidence remains to support such a hypothesis.
H. erectus may have been, however, the first species to create art. Zigzag etchings made on a shell, dating to between 430,000 and 540,000 years ago and found at the Trinil deposit in Java, Indonesia, may be the world’s oldest geometric engravings.
Relationship to Homo sapiens
The question of ancestry
A few researchers have generally opposed the view that H. erectus was the direct ancestor of later species, including Homo sapiens. Louis Leakey argued energetically that H. erectus populations, particularly in Africa, overlap in time with more advanced Homo sapiens and therefore cannot be ancestral to the latter. Some support for Leakey’s point of view has come from analysis of anatomic characteristics exhibited by the fossils. By emphasizing a distinction between “primitive” and “derived” traits in the reconstruction of relationships between species, several paleontologists have attempted to show that H. erectus does not make a suitable morphological ancestor for Homo sapiens. Because the braincase is long, low, and thick-walled and presents a strong browridge, they claim that H. erectus shows derived (or specialized) characteristics not shared with more modern humans. At the same time, it is noted, Homo sapiens does share some features, including a rounded, lightly built cranium, with earlier hominins such as H. habilis. For these reasons, some paleontologists (including Leakey) consider the more slender, or “gracile,” H. habilis and H. rudolfensis to be more closely related to Homo sapiens than is H. erectus. These findings are not widely accepted, however. Instead, studies of size in human evolution indicate that representatives of Homo can be grouped into a reasonable ancestor-to-descendant sequence showing increases in body size. Despite having a heavier, more flattened braincase, H. erectus, most particularly the African representatives of the species sometimes called H. ergaster, is not out of place in this sequence.
If this much is agreed, there is still uncertainty as to how and where H. erectus eventually gave rise to Homo sapiens. This is a major question in the study of human evolution and one that resists resolution even when hominin fossils from throughout the Old World are surveyed in detail. Several general hypotheses have been advanced, but there is still no firm consensus regarding models of gradual change as opposed to scenarios of rapid evolution in which change in one region is followed by migration of the new populations into other areas.
Theories of gradual change
A traditional view held by some paleontologists is that a species may be transformed gradually into a succeeding species. Such successive species in the evolutionary sequence are called chronospecies. The boundaries between chronospecies are almost impossible to determine by means of any objective anatomic or functional criteria; thus, all that is left is the guesswork of drawing a boundary at a moment in time. Such a chronological boundary may have to be drawn arbitrarily between the last survivors of H. erectus and the earliest members of a succeeding species (e.g., Homo sapiens). The problem of defining the limits of chronospecies is not peculiar to H. erectus; it is one of the most vexing questions in paleontology.
Such gradual change with continuity between successive forms has been postulated particularly for North Africa, where H. erectus at Tighenif is seen as ancestral to later populations at Rabat, Temara, Jebel Irhoud, and elsewhere. Gradualism has also been postulated for Southeast Asia, where H. erectus at Sangiran may have progressed toward populations such as those at Ngandong (Solo) and at Kow Swamp in Australia. Some researchers have suggested that similar developments could have occurred in other parts of the world.
The supposed interrelation of cultural achievement and the shape and size of teeth, jaws, and brain is a theorized state of affairs with which some paleoanthropologists disagree. Throughout the human fossil record there are examples of dissociation between skull shape and size on the one hand and cultural achievement on the other. For example, a smaller-brained H. erectus may have been among the first humans to tame fire, but much bigger-brained people in other regions of the world living later in time have left no evidence that they knew how to handle it. Gradualism is at the core of the so-called “multiregional” hypothesis (see human evolution), in which it is theorized that H. erectus evolved into Homo sapiens not once but several times as each subspecies of H. erectus, living in its own territory, passed some postulated critical threshold. This theory depends on accepting a supposed erectus-sapiens threshold as correct. It is opposed by supporters of the “out of Africa” hypothesis, who find the threshold concept at variance with the modern genetic theory of evolutionary change.
Theories of punctuated change
A gradual transition from H. erectus to Homo sapiens is one interpretation of the fossil record, but the evidence also can be read differently. Many researchers have come to accept what can be termed a punctuated view of human evolution. This view suggests that species such as H. erectus may have exhibited little or no morphological change over long periods of time (evolutionary stasis) and that the transition from one species to a descendant form may have occurred relatively rapidly and in a restricted geographic area rather than on a worldwide basis. Whether any Homo species, including our own, evolved gradually or rapidly has not been settled.
The continuation of such arguments underlines the need for more fossils to establish the range of physical variation of H. erectus and also for more discoveries in good archaeological contexts to permit more precise dating. Additions to these two bodies of data may settle remaining questions and bring the problems surrounding the evolution of H. erectus nearer to resolution.
Phillip Vallentine TobiasG. Philip Rightmire