With the European recovery and translation of Greek mathematical texts during the 12th century—the first Latin translation of Euclid’s Elements, by Adelard of Bath, was made about 1120—and with the multiplication of universities beginning around 1200, the Elements was installed as the ultimate textbook in Europe. Academic demand made it attractive to printers, and soon vernacular versions were introduced throughout Europe: the first English translation was made by Sir Henry Billingsley in 1570. However, despite availability of the Elements and repeated endorsement of the usefulness of geometry in exercising the reason and improving the arts and sciences, no more of it was taught in many secondary and higher schools in early modern Europe than in the Dark Ages.

In 1662 the famous diarist Samuel Pepys, then a senior official of the British Admiralty, had to hire a tutor to teach him the multiplication table; he had no arithmetic, let alone geometry, although he had received a bachelor’s and a master’s degree from Magdalene College, University of Cambridge. Beginning in the 18th century, however, owing to interest in Isaac Newton’s physics and the need for more accurate navigation, mathematics improved in England. The Elements became the kernel of the most prestigious course of study at Cambridge, and Euclidean proofs were formalized so that each assertion and its justification came on a separate line. As a wider proportion of the populace obtained a secondary education in the later 19th century, geometry courses departed from slavish dependence on Euclid, despite strong opposition from traditionalists like Lewis Carroll, the Oxford don who wrote Alice in Wonderland.

This freer approach had long been followed on the Continent. The Jesuits, the schoolmasters of Europe during the 17th and most of the 18th century, took liberties in drumming geometry into non-mathematical heads. Jesuit professors of mathematics rearranged the Elements, added a little algebra, and dropped propositions and proofs deemed irrelevant or useless. This lèse-majesté was carried farthest in France, which, perhaps in consequence, produced the largest number of good geometers in Europe during the late 18th century. One of them, Adrien-Marie Legendre, produced a version of the Elements that had an immense influence. He used trigonometry, eliminated Euclid’s wearisome treatment of incommensurables, omitted proofs of the obvious, and added practical examples. His approach was incorporated into the curriculum of the secondary schools (lycées) devised during the French Revolution. Translations and adaptations of French geometry textbooks invaded American high schools and colleges; a leading U.S. textbook in 1890 was the 42nd edition of Legendre’s Elements Americanized.

The 20th century saw an accelerating move away from Euclid’s form of teaching geometry by rigorously and systematically building up the subject. Proportionally more individuals studying geometry, accompanied by a general decline in teaching standards, recommended simplification. More algebra, elementary trigonometry, analytical geometry, and problems for pocket calculators obscured what remained of Euclid’s method. As the (British) Mathematical Association declared in 1923, apropos the replacement of geometrical argument by trigonometry, “human nature takes refuge only too readily in a formula.” The pocket calculator and the personal computer may hold the key to the way back. Outlaw the calculator and employ the computer, which invites attention to images and makes possible the easy manipulation of diagrams, for advancing understanding of geometrical relationships as well as for promoting mindless play with pictures.

J.L. Heilbron
Britannica Chatbot logo

Britannica Chatbot

Chatbot answers are created from Britannica articles using AI. This is a beta feature. AI answers may contain errors. Please verify important information using Britannica articles. About Britannica AI.
Top Questions

What is chemistry?

How are chemistry and biology related?

chemistry, the science that deals with the properties, composition, and structure of substances (defined as elements and compounds), the transformations they undergo, and the energy that is released or absorbed during these processes. Every substance, whether naturally occurring or artificially produced, consists of one or more of the hundred-odd species of atoms that have been identified as elements. Although these atoms, in turn, are composed of more elementary particles, they are the basic building blocks of chemical substances; there is no quantity of oxygen, mercury, or gold, for example, smaller than an atom of that substance. Chemistry, therefore, is concerned not with the subatomic domain but with the properties of atoms and the laws governing their combinations and how the knowledge of these properties can be used to achieve specific purposes.

The great challenge in chemistry is the development of a coherent explanation of the complex behaviour of materials, why they appear as they do, what gives them their enduring properties, and how interactions among different substances can bring about the formation of new substances and the destruction of old ones. From the earliest attempts to understand the material world in rational terms, chemists have struggled to develop theories of matter that satisfactorily explain both permanence and change. The ordered assembly of indestructible atoms into small and large molecules, or extended networks of intermingled atoms, is generally accepted as the basis of permanence, while the reorganization of atoms or molecules into different arrangements lies behind theories of change. Thus chemistry involves the study of the atomic composition and structural architecture of substances, as well as the varied interactions among substances that can lead to sudden, often violent reactions.

Chemistry also is concerned with the utilization of natural substances and the creation of artificial ones. Cooking, fermentation, glass making, and metallurgy are all chemical processes that date from the beginnings of civilization. Today, vinyl, Teflon, liquid crystals, semiconductors, and superconductors represent the fruits of chemical technology. The 20th century saw dramatic advances in the comprehension of the marvelous and complex chemistry of living organisms, and a molecular interpretation of health and disease holds great promise. Modern chemistry, aided by increasingly sophisticated instruments, studies materials as small as single atoms and as large and complex as DNA (deoxyribonucleic acid), which contains millions of atoms. New substances can even be designed to bear desired characteristics and then synthesized. The rate at which chemical knowledge continues to accumulate is remarkable. Over time more than 8,000,000 different chemical substances, both natural and artificial, have been characterized and produced. The number was less than 500,000 as recently as 1965.

Intimately interconnected with the intellectual challenges of chemistry are those associated with industry. In the mid-19th century the German chemist Justus von Liebig commented that the wealth of a nation could be gauged by the amount of sulfuric acid it produced. This acid, essential to many manufacturing processes, remains today the leading chemical product of industrialized countries. As Liebig recognized, a country that produces large amounts of sulfuric acid is one with a strong chemical industry and a strong economy as a whole. The production, distribution, and utilization of a wide range of chemical products is common to all highly developed nations. In fact, one can say that the “iron age” of civilization is being replaced by a “polymer age,” for in some countries the total volume of polymers now produced exceeds that of iron.

The scope of chemistry

The days are long past when one person could hope to have a detailed knowledge of all areas of chemistry. Those pursuing their interests into specific areas of chemistry communicate with others who share the same interests. Over time a group of chemists with specialized research interests become the founding members of an area of specialization. The areas of specialization that emerged early in the history of chemistry, such as organic, inorganic, physical, analytical, and industrial chemistry, along with biochemistry, remain of greatest general interest. There has been, however, much growth in the areas of polymer, environmental, and medicinal chemistry during the 20th century. Moreover, new specialities continue to appear, as, for example, pesticide, forensic, and computer chemistry.

Periodic Table of the elements concept image (chemistry)
Britannica Quiz
Facts You Should Know: The Periodic Table Quiz
Britannica Chatbot logo

Britannica Chatbot

Chatbot answers are created from Britannica articles using AI. This is a beta feature. AI answers may contain errors. Please verify important information using Britannica articles. About Britannica AI.