The origin of the science of acoustics is generally attributed to the Greek philosopher Pythagoras (6th century bc), whose experiments on the properties of vibrating strings that produce pleasing musical intervals were of such merit that they led to a tuning system that bears his name. Aristotle (4th century bc) correctly suggested that a sound wave propagates in air through motion of the air—a hypothesis based more on philosophy than on experimental physics; however, he also incorrectly suggested that high frequencies propagate faster than low frequencies—an error that persisted for many centuries. Vitruvius, a Roman architectural engineer of the 1st century bc, determined the correct mechanism for the transmission of sound waves, and he contributed substantially to the acoustic design of theatres. In the 6th century ad, the Roman philosopher Boethius documented several ideas relating science to music, including a suggestion that the human perception of pitch is related to the physical property of frequency.

The modern study of waves and acoustics is said to have originated with Galileo Galilei (1564–1642), who elevated to the level of science the study of vibrations and the correlation between pitch and frequency of the sound source. His interest in sound was inspired in part by his father, who was a mathematician, musician, and composer of some repute. Following Galileo’s foundation work, progress in acoustics came relatively rapidly. The French mathematician Marin Mersenne studied the vibration of stretched strings; the results of these studies were summarized in the three Mersenne’s laws. Mersenne’s Harmonicorum Libri (1636) provided the basis for modern musical acoustics. Later in the century Robert Hooke, an English physicist, first produced a sound wave of known frequency, using a rotating cog wheel as a measuring device. Further developed in the 19th century by the French physicist Félix Savart, and now commonly called Savart’s disk, this device is often used today for demonstrations during physics lectures. In the late 17th and early 18th centuries, detailed studies of the relationship between frequency and pitch and of waves in stretched strings were carried out by the French physicist Joseph Sauveur, who provided a legacy of acoustic terms used to this day and first suggested the name acoustics for the study of sound.

One of the most interesting controversies in the history of acoustics involves the famous and often misinterpreted “bell-in-vacuum” experiment, which has become a staple of contemporary physics lecture demonstrations. In this experiment the air is pumped out of a jar in which a ringing bell is located; as air is pumped out, the sound of the bell diminishes until it becomes inaudible. As late as the 17th century many philosophers and scientists believed that sound propagated via invisible particles originating at the source of the sound and moving through space to affect the ear of the observer. The concept of sound as a wave directly challenged this view, but it was not established experimentally until the first bell-in-vacuum experiment was performed by Athanasius Kircher, a German scholar, who described it in his book Musurgia Universalis (1650). Even after pumping the air out of the jar, Kircher could still hear the bell, so he concluded incorrectly that air was not required to transmit sound. In fact, Kircher’s jar was not entirely free of air, probably because of inadequacy in his vacuum pump. By 1660 the Anglo-Irish scientist Robert Boyle had improved vacuum technology to the point where he could observe sound intensity decreasing virtually to zero as air was pumped out. Boyle then came to the correct conclusion that a medium such as air is required for transmission of sound waves. Although this conclusion is correct, as an explanation for the results of the bell-in-vacuum experiment it is misleading. Even with the mechanical pumps of today, the amount of air remaining in a vacuum jar is more than sufficient to transmit a sound wave. The real reason for a decrease in sound level upon pumping air out of the jar is that the bell is unable to transmit the sound vibrations efficiently to the less dense air remaining, and that air is likewise unable to transmit the sound efficiently to the glass jar. Thus, the real problem is one of an impedance mismatch between the air and the denser solid materials—and not the lack of a medium such as air, as is generally presented in textbooks. Nevertheless, despite the confusion regarding this experiment, it did aid in establishing sound as a wave rather than as particles.

Britannica Chatbot logo

Britannica Chatbot

Chatbot answers are created from Britannica articles using AI. This is a beta feature. AI answers may contain errors. Please verify important information using Britannica articles. About Britannica AI.

Measuring the speed of sound

Once it was recognized that sound is in fact a wave, measurement of the speed of sound became a serious goal. In the 17th century, the French scientist and philosopher Pierre Gassendi made the earliest known attempt at measuring the speed of sound in air. Assuming correctly that the speed of light is effectively infinite compared with the speed of sound, Gassendi measured the time difference between spotting the flash of a gun and hearing its report over a long distance on a still day. Although the value he obtained was too high—about 478.4 metres per second (1,569.6 feet per second)—he correctly concluded that the speed of sound is independent of frequency. In the 1650s, Italian physicists Giovanni Alfonso Borelli and Vincenzo Viviani obtained the much better value of 350 metres per second using the same technique. Their compatriot G.L. Bianconi demonstrated in 1740 that the speed of sound in air increases with temperature. The earliest precise experimental value for the speed of sound, obtained at the Academy of Sciences in Paris in 1738, was 332 metres per second—incredibly close to the presently accepted value, considering the rudimentary nature of the measuring tools of the day. A more recent value for the speed of sound, 331.45 metres per second (1,087.4 feet per second), was obtained in 1942; it was amended in 1986 to 331.29 metres per second at 0° C (1,086.9 feet per second at 32° F).

The speed of sound in water was first measured by Daniel Colladon, a Swiss physicist, in 1826. Strangely enough, his primary interest was not in measuring the speed of sound in water but in calculating water’s compressibility—a theoretical relationship between the speed of sound in a material and the material’s compressibility having been established previously. Colladon came up with a speed of 1,435 metres per second at 8° C; the presently accepted value interpolated at that temperature is about 1,439 metres per second.

Two approaches were employed to determine the velocity of sound in solids. In 1808 Jean-Baptiste Biot, a French physicist, conducted direct measurements of the speed of sound in 1,000 metres of iron pipe by comparing it with the speed of sound in air. A better measurement had earlier been carried out by a German, Ernst Florenz Friedrich Chladni, using analysis of the nodal pattern in standing-wave vibrations in long rods.