Crossbreeding

Crossbreeding involves the mating of animals from two breeds. Normally, breeds are chosen that have complementary traits that will enhance the offsprings’ economic value. An example is the crossbreeding of Yorkshire and Duroc breeds of pigs. Yorkshires have acceptable rates of gain in muscle mass and produce large litters, and Durocs are very muscular and have other acceptable traits, so these breeds are complementary. Another example is Angus and Charolais beef cattle. Angus produce high-quality beef and Charolais are especially large, so crossbreeding produces an animal with acceptable quality and size.

The other consideration in crossbreeding is heterosis, or hybrid vigour, which is displayed when the offspring performance exceeds the average performance of the parent breeds. This is a common phenomenon in which increased size, growth rate, and fertility are displayed by crossbred offspring, especially when the breeds are more genetically dissimilar. Such increases generally do not increase in successive generations of crossbred stock, so purebred lines must be retained for crossbreeding and for continual improvement in the parent breeds. In general, there is more heterosis for traits with low heritability. In particular, heterosis is thought to be associated with the collective action of many genes having small effects individually but large effects cumulatively. Because of hybrid vigour, a high proportion of commercial pork and beef come from crossbred animals.

Inbreeding

Mating animals that are related causes inbreeding. Inbreeding is often described as “narrowing the genetic base” because the mating of related animals results in offspring that have more genes in common. Inbreeding is used to concentrate desirable traits. Mild inbreeding has been used in some breeds of dogs and has been extensively used in laboratory mice and rats. For example, mice have been bred to be highly sensitive to compounds that might be detrimental or useful to humans. These mice are highly inbred so that researchers can obtain the same response with replicated treatments.

Inbreeding is generally detrimental in domestic animals. Increased inbreeding is accompanied by reduced fertility, slower growth rates, greater susceptibility to disease, and higher mortality rates. As a result, producers try to avoid mating related animals. This is not always possible, though, when long-continued selection for the same traits is practiced within a small population, because parents of future generations are the best candidates from the last generation, and some inbreeding tends to accumulate. The rate of inbreeding can be reduced, but, if inbreeding depression becomes evident, some method of introducing more diverse genes will be needed. The most common method is some form of crossbreeding.

The genetic code (DNA) and immunogenetics

DNA

Deoxyribonucleic acid (DNA) is the genetic material that contains the instructions in each cell of organisms. DNA determines the genome, and thus the genetic code, which is a blueprint for development of all body organs and structures. The structure of DNA can be visualized as a spiral staircase. The handrails are made up of sugar and phosphate molecules, and the steps are composed of four nitrogenous bases: adenine, thymine, cytosine, and guanine. These bases are paired: adenine is paired with thymine, and cytosine is paired with guanine. The order of these four base pairs is the genetic code that determines the genotype of an individual. The DNA is arranged on chromosomes inside cells, with cells having two methods of dividing and replicating. In mitosis, a cell divides into two daughter cells such that each contains an exact copy of the original cell’s chromosomes. In meiosis, a germ cell’s chromosomes are duplicated before the cell undergoes two divisions to produce four gametes, or sex cells, each with half (male or female) of the original cell’s chromosomes. During the process of fertilization, male and female gametes from different organisms pair their chromosomes to form a zygote, which eventually becomes an adult.

Farm in Saskatchewan
More From Britannica
origins of agriculture: Animal breeding

Genetic progress in domestic animals has been made using quantitative methods to date. It would be very desirable to know the genes that control the many traits that have economic significance in domestic animals. This should make selection more accurate. Information from sequencing human genes, as well as those of other species, is being used to find chromosomal segments with high probabilities of coding genes in livestock. Another approach is to scan a chromosome segment and look for associations with economic traits. Several quantitative trait loci have been discovered that are or promise to be useful in livestock breeding. For example, an estrogen receptor in pigs is associated with increased litter size—on average, an increase of 0.6 to 2.0 pigs per litter, depending on the genetic background in which the gene is expressed. Other genes have been found that control the secretion of casein in cow’s milk. Genes are also known for growth hormone, and many others could be enumerated. With improvements in sequencing DNA, more genes will be discovered that affect economic traits—genes that will need to be tested in different genetic backgrounds and environments before they can be commercialized.

It is now much less expensive to sequence DNA, which has led to new methods of evaluating animals using large segments of 30,000–50,000 bases. With the use of these large segments of DNA, animals are evaluated without looking for markers for individual traits. This is intuitively an appealing approach because much more of the DNA can be evaluated; perhaps in the future the entire genome can be used to evaluate animals. This method of selection, called genomic selection, is now being applied to dairy cattle, but results are not yet available.

Immunogenetics

The connection between an organism’s genetic makeup and its immune system, as well as applications of that knowledge, form the young science of immunogenetics. In particular, producers must control diseases in their livestock if they are going to be profitable. While vaccines, hygiene, and other therapeutic methods control most diseases, vaccines are expensive and none of these methods is completely effective. However, there is evidence from experiments and field data of some degree of genetic control over the immune system in humans and animals. For example, bovine leukocyte adhesion deficiency (BLAD) is a hereditary disease that was discovered in Holstein calves in the 1980s. The presence of the BLAD gene leads to high rates of bacterial infections, pneumonia, diarrhea, and typically death by age four months in cattle, and those that survive their youth have stunted growth and continued susceptibility to infections. It was soon found that these calves carried two copies of a recessive gene that was present in nearly 25 percent of Holstein bulls. Cattle with only one copy of the gene, or carriers, had normal growth patterns and immune systems. Holstein bulls are now routinely tested for the BLAD gene before being used for artificial insemination. With a high percentage of Holsteins being bred artificially, a potentially major problem has been avoided.

Genetic control of the immune system is based on the DNA of the individuals. Histocompatibility genes that serve several functions are on one area of a chromosome, called the major histocompatibility complex (MHC), which exists in all higher vertebrates. There are large numbers of genes involved in the MHCs of different species. There are more than 60 different alleles at one locus and other loci are multi-allelic. There are also differences among species in the number of genes known. In addition, selection experiments have demonstrated genetic variation between lines selected for high and low response to different antigens. Some vaccinations are more efficacious when the animals have been selected for resistance to the antigen for which they are vaccinated.

Substantial progress has been made in the field of immunogenetics, but limited use has been made of this knowledge. One reason for this is that immune systems have evolved to be generally robust. Changing the frequency of some genes that control immune function may inadvertently change the function of other genes and result in adverse effects. Experiments are now under way to determine whether sires’ immune responses can be used to predict the health of their daughters under field conditions. The results indicate that there are differences among sires’ daughter groups, but the differences are not large enough to control a high proportion of the variability. The tests used were based primarily on leukocytes, which are the first line of defense when an antigen invades an animal. Application of knowledge in the area of immunogenetics must be used with caution.

It might seem that integrating molecular markers and quantitative methods would be a trivial task. However, the effect of some genes depends on the presence of others, and these interactions need to be considered along with the particular breeding scheme. Furthermore, there are nongenetic influences that may turn genes on and off. Thus, some genes act individually, some genes interact, and the environment has a further impact. Finding how these all affect the phenotypic expression of an organism is complicated. However, this challenge presents an opportunity for future research and for producers.

Many advances in reproductive technologies have been made, though many are too expensive for everyday use. Most of the advanced techniques use artificial insemination, which was developed decades ago, though refinements continue.

Cloning

Cloning, an asexual method of reproduction, produces an individual with the same genetic material (DNA) as another individual. Probably the best-known examples of clones are identical twins, which result when cells in the early development stage separate and develop into different individuals. Though the DNA in cloned individuals is the same, environmental influences may make them differ in phenotype. Thus far, the commercial use of clones has been limited. Cloning can be used to produce clones from a highly productive individual, but the cost would have to be low enough to recover the expense quickly. Animals have been cloned by three processes: embryo splitting, blastomere dispersal, and nuclear transfer. Nuclear transfer is most common and involves enucleating an ovum, or egg, with all the genetic material removed. This material is replaced with a full set of chromosomes from a suitable donor cell, which is microinjected into the enucleated cell. Then the enucleated cell, with the transplanted chromosome, is placed into a recipient female to be carried through gestation.

Determining sex from sperm

There is a commercial demand for the ability to predetermine the sex of livestock. For example, a producer may want female calves from the best cows for replacements and male calves for beef production. Dairy producers may want more females for replacing cows or for expansion of their herds. The sex of mammals is determined by the sex chromosomes, or X and Y chromosomes. Animals with two X chromosomes develop into females; animals with an X and a Y chromosome develop into males. Thus, the detection of X and Y chromosomes on sperm has been the focus of research to predetermine the sex of domestic animals.

In one process, sperm is pretreated with a dye that fluoresces when exposed to short wavelength light. The fluorescence is brighter from a sperm bearing X chromosomes, which contain about 4 percent more DNA than the Y chromosome. A stream of dyed sperm is passed through a flow cytometer, a computer determines the degree of fluorescence, and the sperm is separated into different containers. The success rate can be as high as 40 percent. When “sexed sperm” has been used on a commercial basis, though, it has had limited success. The conception rate using sexed sperm is lower in cows, though it is higher in primiparous cows. In addition, sperm are killed in the typing process, and the rate of sexing the sperm is slower than desired. While economical processing of sperm is just getting started, it is expected to become another useful tool in animal agriculture.

Albert E. Freeman