Preparatory events
- Related Topics:
- animal
- biological development
In the case of multicellular animals we find there are two kinds of sex cells: the female sex cell (ovum, or egg), derived from an oocyte (immature egg), and the male sex cell (spermatozoon or sperm), derived from a spermatocyte. Eggs are produced in ovaries; sperm, in testes. Both the egg and the sperm contribute to the development of the new individual; each providing one set of genes, thereby restoring the diploid number of chromosomes in the fertilized egg. The sperm possesses a whiplike tail (flagellum) that enables it to swim to the egg to fertilize it. In most cases the egg, a stationary, spherical cell, provides the potential offspring with a store of food materials, or yolk, for its early development. The term yolk does not refer to any particular substance but in fact includes proteins, phosphoproteins, lipids, cholesterol, and fats, all of which substances occur in various proportions in the eggs of different animals. In addition to yolk, eggs accumulate other components and acquire the structure necessary for the development of the new individual. In particular the egg acquires polarity—that is, the two ends, or poles, of the egg become distinctive from each other. At one pole, known as the animal pole, the cytoplasm appears to be more active and contains the nucleus (meiotic divisions occur in this region); at the other, called the vegetal pole, the cytoplasm is less active and contains most of the yolk. The general organization of the future animal is closely related to the polarity of the egg.
When the amount of food reserve is comparatively small, as it is in many marine invertebrates and mammals (in the latter the embryo is nourished by materials in the mother’s blood), the egg may be barely visible to the unaided eye. The egg of the sea urchin is about 75 microns (0.003 inch) in diameter; that of a human being is slightly more than 0.1 millimetre. Eggs are classified according to the amount of yolk present. An egg with a small quantity of evenly distributed yolk is called an oligolecithal egg. One with more yolk that is unevenly distributed (i.e., concentrated towards the vegetal pole) is telolecithal; and one with still greater amounts of yolk in granules or in a compact mass is megalecithal.
The egg is surrounded by protective membranes, which may be soft and jellylike or hard and calcified, like shells. Egg membranes are produced while the egg is either in the ovary or being carried away from the ovary in a tube called an oviduct. The eggs of many animals have both kinds of membranes. In insects, a hard shell (chorion) forms around the eggs in the ovaries. In frogs, a very thin vitelline membrane forms around the eggs in the ovary; subsequently a layer of jelly is deposited around the eggs while they pass through the oviducts. In birds, a very thin vitelline membrane is produced around the egg in the ovary; then several layers of secondary membranes are formed in the oviduct before the egg is laid. The outermost of these secondary membranes is the calcareous shell. In mammals the egg is surrounded by the so-called pellucid zone, which is equivalent to the vitelline membrane of other animals; follicle cells form an area called the corona radiata around this zone.
After fertilization the egg, now called a zygote, is endowed with genes from two parents and has begun actual development. (Activation of the egg may be brought about by an agent other than sperm in certain animals, but such cases of parthenogenesis are exceptional.
After fertilization, the zygote undergoes a series of transformations that bring it closer to the essential organization of the parents. These transformations, initiated at a physiological, perhaps even at a molecular, level, eventually result in the appearance of certain structures. The whole process is called morphogenesis (Greek morphē, “shape” or “form”; genesis, “origin” or “production”). The process of development is more easily understood if, at every step, the changes necessary to bring the system nearer the goal are considered. Depending on the achievements necessary at any step, development can be subdivided into a number of discrete phases, the first of which, cleavage, immediately follows fertilization.