- Related Topics:
- stem cell
- tissue
- adipose cell
- DNA repair
- membrane
The chemical structure of the cell membrane makes it remarkably flexible, the ideal boundary for rapidly growing and dividing cells. Yet the membrane is also a formidable barrier, allowing some dissolved substances, or solutes, to pass while blocking others. Lipid-soluble molecules and some small molecules can permeate the membrane, but the lipid bilayer effectively repels the many large, water-soluble molecules and electrically charged ions that the cell must import or export in order to live. Transport of these vital substances is carried out by certain classes of intrinsic proteins that form a variety of transport systems: some are open channels, which allow ions to diffuse directly into the cell; others are “facilitators,” which, through a little-understood chemical transformation, help solutes diffuse past the lipid screen; yet others are “pumps,” which force solutes through the membrane when they are not concentrated enough to diffuse spontaneously. Particles too large to be diffused or pumped are often swallowed or disgorged whole by an opening and closing of the membrane.
Behind this movement of solutes across the cell membrane is the principle of diffusion. According to this principle, a dissolved substance diffuses down a concentration gradient; that is, given no energy from an outside source, it moves from a place where its concentration is high to a place where its concentration is low. Diffusion continues down this gradually decreasing gradient until a state of equilibrium is reached, at which point there is an equal concentration in both places and an equal, random diffusion in both directions.
A solute at high concentration is at high free energy; that is, it is capable of doing more “work” (the work being that of diffusion) than a solute at low concentration. In performing the work of diffusion, the solute loses free energy, so that, when it reaches equilibrium at a lower concentration, it is unable to return spontaneously (under its own energy) to its former high concentration. However, by the addition of energy from an outside source (through the work of an ion pump, for example), the solute may be returned to its former concentration and state of high free energy. This “coupling” of work processes is, in effect, a transferal of free energy from the pump to the solute, which is then able to repeat the work of diffusion. (See above Coupled chemical reactions.)
For most substances of biological interest, the concentrations inside and outside the cell are different, creating concentration gradients down which the solutes spontaneously diffuse, provided they can permeate the lipid bilayer. Membrane channels and diffusion facilitators bring them through the membrane by passive transport; that is, the changes that the proteins undergo in order to facilitate diffusion are powered by the diffusing solutes themselves. For the healthy functioning of the cell, certain solutes must remain at different concentrations on each side of the membrane; if through diffusion they approach equilibrium, they must be pumped back up their gradients by the process of active transport. Those membrane proteins serving as pumps accomplish this by coupling the energy required for transport to the energy produced by cell metabolism or by the diffusion of other solutes.
Permeation
Permeation is the diffusion, through a barrier, of a substance in solution. The rates at which biologically important molecules cross the cell membrane through permeation vary over an enormous range. Proteins and sugar polymers do not permeate at all; in contrast, water and alcohols permeate most membranes in less than a second. This variation, caused by the lipid bilayer, gives the membrane its characteristic permeability. Permeability is measured as the rate at which a particular substance in solution crosses the membrane.
For all cell membranes that have been studied in the laboratory, permeability increases in parallel with the permeant’s ability to dissolve in organic solvents. The consistency of this parallel has led researchers to conclude that permeability is a function of the fatty acid interior of the lipid bilayer, rather than its phosphoryl exterior. This property of dissolving in organic solvents rather than water is given a unit of measure called the partition coefficient. The greater the solubility of a substance, the higher its partition coefficient, and the higher the partition coefficient, the higher the permeability of the membrane to that particular substance. For example, the water solubility of hydroxyl, carboxyl, and amino groups reduces their solubility in organic solvents and, hence, their partition coefficients. Cell membranes have been observed to have low permeability toward these groups. In contrast, lipid-soluble methyl residues and hydrocarbon rings, which have high partition coefficients, penetrate cell membranes more easily—a property useful in designing chemotherapeutic and pharmacological drugs.
For two molecules of the same partition coefficient, the one of greater molecular weight, or size, will in general cross the membrane more slowly. In fact, even molecules with very low partition coefficients can penetrate the membrane if they are small enough. Water, for example, is insoluble in organic solvents, yet it permeates cell membranes because of the small size of its molecules. The size selectivity of the lipid bilayer is a result of its being not a simple fluid, the molecules of which move around and past a diffusing molecule, but an organized matrix, a kind of fixed grate, composed of the fatty acid chains of the phospholipids through which the diffusing molecule must fit.
Many substances do not actually cross the cell membrane through permeation of the lipid bilayer. Some electrically charged ions, for example, are repelled by organic solvents and therefore cross cell membranes with great difficulty, if at all. In these cases special holes in the membrane, called channels, allow specific ions and small molecules to diffuse directly through the bilayer.
Membrane channels
Biophysicists measuring the electric current passing through cell membranes have found that, in general, cell membranes have a vastly greater electrical conductance than does a membrane bilayer composed only of phospholipids and sterols. This greater conductance is thought to be conferred by the cell membrane’s proteins. A current flowing across a membrane often appears on a recording instrument as a series of bursts of various heights. These bursts represent current flowing through open channels, which are merely holes formed by intrinsic proteins traversing the lipid bilayer. No significant current flows through the membrane when no channel is open; multiple bursts are recorded when more than one channel is open.
A rich variety of channels has been isolated and analyzed from a wide range of cell membranes. Invariably intrinsic proteins, they contain numerous amino acid sequences that traverse the membrane, clearly forming a specific hole, or pore. Certain channels open and close spontaneously. Some are gated, or opened, by the chemical action of a signaling substance such as calcium, acetylcholine, or glycine, whereas others are gated by changes in the electrical potential across the membrane. Channels may possess a narrow specificity, allowing passage of only potassium or sodium, or a broad specificity, allowing passage of all positively charged ions (cations) or of all negatively charged ions (anions). There are channels called gap junctions that allow the passage of molecules between pairs of cells (see below The cell matrix and cell-to-cell communication).
The gating of channels with a capacity for ion transport is the basis of the many nerve-nerve, nerve-muscle, and nerve-gland interactions underlying neurobiological behavior. These actions depend on the electric potential of the cell membrane, which varies with the prevailing constituents in the cell’s environment. For example, if a channel that admits only potassium ions is present in a membrane separating two different potassium chloride solutions, the positively charged potassium ions tend to flow down their concentration gradient through the channel. The negatively charged chloride ions remain behind. This separation of electric charges sets up an electric potential across the membrane called the diffusion potential. The size of this potential depends on, among other factors, the difference in concentrations of the permeating ion across the membrane. The cell membrane in general contains the channels of widely different ion specificities, each channel contributing to the overall membrane potential according to the permeability and concentration ratio of the ion passing through it. Since the channels are often gated, the membrane’s potential is determined by which channels are open; this in turn depends on the concentrations of signaling molecules and may change with time according to the membrane potential itself.
Most cells have about a tenfold higher concentration of sodium ions outside than inside and a reverse concentration ratio of potassium ions. Free calcium ions can be 10,000 times more concentrated outside the cell than inside. Thus, sodium-, potassium-, and calcium-selective membrane channels, by allowing the diffusion of those ions past the cell membrane and causing fluctuations in the membrane’s electric potential, frequently serve as transmitters of signals from nerve cells. Ion diffusion threatens to alter the concentration of ions necessary for the cell to function. The proper distribution of ions is restored by the action of ion pumps (see below Primary active transport).
Facilitated diffusion
Many water-soluble molecules that cannot penetrate the lipid bilayer are too large to fit through open channels. In this category are sugars and amino acids. Some ions too do not diffuse through channels. These vital substances enter and leave the cell through the action of membrane transporters, which, like channels, are intrinsic proteins that traverse the cell membrane. Unlike channels, transporter molecules do not simply open holes in the membrane. Rather, they present sites on one side of the membrane to which molecules bind through chemical attraction. The binding site is highly specific, often fitting the atomic structure of only one type of molecule. When the molecule has attached to the binding site, then, in a process not fully understood, the transporter brings it through the membrane and releases it on the other side.
This action is considered a type of diffusion because the transported molecules move down their concentration gradients, from high concentration to low. To activate the action of the transporter, no other energy is needed than that of the chemical binding of the transported molecules. This action upon the transporter is similar to catalysis, except that the molecules (in this context called substrates) catalyze not a chemical reaction but their own translocation across the cell membrane. Two such substrates are glucose and the bicarbonate ion.
The glucose transporter
This sugar-specific transport system enables half of the glucose present inside the cell to leave within four seconds at normal body temperature. The glucose transporter is clearly not a simple membrane channel. First, unlike a channel, it does not select its permeants by size, as one type of glucose is observed to move through the system a thousand times faster than its identically sized optical isomer. Second, it operates much more slowly than do most channels, moving only 1,000 molecules per second while a channel moves 1,000,000 ions. The most important difference between a membrane channel and the glucose transporter is the conformational change that the transporter undergoes while moving glucose across the membrane. Alternating between two conformations, it moves its glucose-binding site from one side of the membrane to the other. By “flipping” between its two conformational states, the transporter facilitates the diffusion of glucose; that is, it enables glucose to avoid the barrier of the cell membrane while moving spontaneously down its concentration gradient. When the concentration reaches equilibrium, net movement of glucose ceases.
A facilitated diffusion system for glucose is present in many cell types. Similar systems transporting a wide range of other substrates (e.g., different sugars, amino acids, nucleosides, and ions) are also present.
The anion transporter
The best-studied of the facilitated diffusion systems is that which catalyzes the exchange of anions across the red blood cell membrane. The exchange of hydroxyl for bicarbonate ions, each ion simultaneously being moved down its concentration gradient in opposite directions by the same transport molecule, is of great importance in enhancing the blood’s capacity to carry carbon dioxide from tissues to the lungs. The exchange molecule for these anions is the major intrinsic protein of red blood cells; one million of them are present on each cell, the polypeptide chain of each molecule traversing the membrane at least six times.