Element production in stars
- Also called:
- element
A substantial amount of nucleosynthesis must have occurred in stars. It was stated above that a succession of nuclear fusion reactions takes place as the temperature of the stellar material rises. Theories of stellar evolution indicate that the internal temperatures of stars first rise during their life history and eventually fall after reaching a maximum value. For very low-mass stars, the maximum temperature may be too low for any significant nuclear reactions to occur, but for stars as massive as the Sun or greater, most of the sequence of nuclear fusion reactions described above can occur. Moreover, a time scale for stellar evolution is derived in theories of stellar evolution that show that stars substantially more massive than the Sun can have completed their active life history in a time short compared with the age of the universe derived from the big-bang cosmological theory.
This result implies that stars more massive than the Sun, which were formed very early in the life history of the Galaxy, could have produced some of the heavy elements that are seen today but that stars much less massive than the Sun could have played no part in this production. Unless the Galaxy is very much older than is generally believed, such low mass stars, even if formed with the Galaxy, would still be at an early stage in their evolution because changes within them proceed at a relatively slow pace. If there has been substantial heavy-element production in stars, a sufficient fraction of the earliest stars formed must have been relatively massive.
If substantial nucleosynthesis has occurred in stars, could such a process have produced all of the heavy elements that are observed today and possibly all of the helium inside the stars? A vital point is the following: if the heavy elements produced in stars are to influence what is observed, they must be expelled from the interiors of the stars in which they are produced and incorporated into future generations of stars, in which they can be observed subsequently. Unfortunately, direct knowledge of mass loss from stars is fragmentary; steady loss of mass is observed in some stars, and a few are observed to explode catastrophically, as in the explosion of a supernova. At present it is only possible for a very rough estimate to be made of the rate of exchange of matter between stars and the interstellar medium.
Supernovae are believed to be stars reaching the end of their evolution, and many astronomers believe that a supernova explosion is the main process whereby heavy elements produced inside stars are returned to the interstellar medium. In addition, because a supernova explosion is the most violent type of event regularly observed in galaxies, it is believed that cosmic rays must also be produced in the explosion. Some rough estimates follow. The mass of the Galaxy is believed to be between 1011 and 2 × 1011 solar masses, and perhaps 2 × 109 solar masses are heavy elements. If these heavy elements were produced steadily in a galactic lifetime of about 1010 years, one-fifth of a solar mass of heavy elements must have been produced each year. Counts of supernovae in nearby galaxies suggest that there might be one supernova explosion per large galaxy about every 30 years. If all the heavy elements are produced in supernovae, about six solar masses are required from each explosion. Although these numbers are very uncertain, this amount seems too large, but it could be reduced if the frequency of supernovae is very much higher in young galaxies. The possibility remains that a significant quantity of heavy elements may be produced by a very large number of less spectacular stars or by much more massive objects that are mentioned below.
If there has been a gradual production of heavy elements, recently formed stars should contain more than old stars. It is possible to identify some stars which have formed quite recently. The light output of stars rises as a rather high power of their mass according to a mass–luminosity relation that is valid for the vast majority of stars whose masses are known, while their supply of nuclear energy is only directly proportional to the mass. This means that the more massive stars complete their life history much more rapidly than low-mass stars and that the brightest stars observed today cannot be more than a few million years old at the most. The heavy-element content of the young stars is greater than that of many old stars, perhaps because of a gradual increase in the heavy-element content of the interstellar medium from which stars are formed. Observations show that only the very oldest stars have an extremely small amount of very heavy elements in their visible layers, and it appears that element production must have been much more rapid when the Galaxy was young than it is now. There may indeed have been a much higher frequency of supernovae. Recent observations suggest also that chemical composition is a function of a star’s place of origin as well as its age. In particular, the production of heavy elements may have been higher near the centre of the Galaxy than elsewhere (see below Element production in massive objects).
Although the first nuclear reaction to occur in stars is the conversion of hydrogen into helium, all of the helium that is observed today can hardly have been produced in ordinary stars, the more so if all objects contain more than about 25 percent helium by mass. Considering the relative amounts of helium and heavier elements, observations indicate that the total mass of helium may be ten times greater than that of the heavier elements; if all elements other than hydrogen have been produced in stars, the relative production of helium and heavier elements must have just this value. As stars evolve, however, the conversion of hydrogen into helium is followed by the conversion of helium into heavier elements. At all stages in a star’s evolution there will be a region where the temperature is suitable for the conversion of hydrogen into helium, but it appears that there will be only a thin shell of helium separating the regions in which hydrogen has not yet been converted into helium and the region where helium has been burned into heavy elements. The possible chemical composition of a highly evolved star is a series of layers of different chemical composition. The central region would contain elements such as iron and nickel with layers of successively lighter elements surrounding it and the outermost layer containing essentially only hydrogen or hydrogen and helium. A very special type of mass loss would be required to expel 10 times as much helium as heavy elements from these different layers into interstellar space.
It is also difficult to see how the full amount of helium could have been produced. If a quarter of the galactic mass, originally hydrogen, has been converted into helium, it can be shown that essentially all of the mass must have passed through at least one generation of massive stars. The total energy release under such a circumstance would imply that the Galaxy was very much more luminous in the past—one hundred times more luminous for the first 10 percent of its lifetime, for example.