Climate change within a human life span
News •
Regardless of their locations on the planet, all humans experience climate variability and change within their lifetimes. The most familiar and predictable phenomena are the seasonal cycles, to which people adjust their clothing, outdoor activities, thermostats, and agricultural practices. However, no two summers or winters are exactly alike in the same place; some are warmer, wetter, or stormier than others. This interannual variation in climate is partly responsible for year-to-year variations in fuel prices, crop yields, road maintenance budgets, and wildfire hazards. Single-year, precipitation-driven floods can cause severe economic damage, such as those of the upper Mississippi River drainage basin during the summer of 1993, and loss of life, such as those that devastated much of Bangladesh in the summer of 1998. Similar damage and loss of life can also occur as the result of wildfires, severe storms, hurricanes, heat waves, and other climate-related events.
Climate variation and change may also occur over longer periods, such as decades. Some locations experience multiple years of drought, floods, or other harsh conditions. Such decadal variation of climate poses challenges to human activities and planning. For example, multiyear droughts can disrupt water supplies, induce crop failures, and cause economic and social dislocation, as in the case of the Dust Bowl droughts in the midcontinent of North America during the 1930s. Multiyear droughts may even cause widespread starvation, as in the Sahel drought that occurred in northern Africa during the 1970s and ’80s.
Seasonal variation
Every place on Earth experiences seasonal variation in climate (though the shift can be slight in some tropical regions). This cyclic variation is driven by seasonal changes in the supply of solar radiation to Earth’s atmosphere and surface. Earth’s orbit around the Sun is elliptical; it is closer to the Sun ( 147 million km [about 91 million miles]) near the winter solstice and farther from the Sun (152 million km [about 94 million miles]) near the summer solstice in the Northern Hemisphere. Furthermore, Earth’s axis of rotation occurs at an oblique angle (23.5°) with respect to its orbit. Thus, each hemisphere is tilted away from the Sun during its winter period and toward the Sun in its summer period. When a hemisphere is tilted away from the Sun, it receives less solar radiation than the opposite hemisphere, which at that time is pointed toward the Sun. Thus, despite the closer proximity of the Sun at the winter solstice, the Northern Hemisphere receives less solar radiation during the winter than it does during the summer. Also as a consequence of the tilt, when the Northern Hemisphere experiences winter, the Southern Hemisphere experiences summer.
Earth’s climate system is driven by solar radiation; seasonal differences in climate ultimately result from the seasonal changes in Earth’s orbit. The circulation of air in the atmosphere and water in the oceans responds to seasonal variations of available energy from the Sun. Specific seasonal changes in climate occurring at any given location on Earth’s surface largely result from the transfer of energy from atmospheric and oceanic circulation. Differences in surface heating taking place between summer and winter cause storm tracks and pressure centres to shift position and strength. These heating differences also drive seasonal changes in cloudiness, precipitation, and wind.
Seasonal responses of the biosphere (especially vegetation) and cryosphere (glaciers, sea ice, snowfields) also feed into atmospheric circulation and climate. Leaf fall by deciduous trees as they go into winter dormancy increases the albedo (reflectivity) of Earth’s surface and may lead to greater local and regional cooling. Similarly, snow accumulation also increases the albedo of land surfaces and often amplifies winter’s effects.

Interannual variation
Interannual climate variations, including droughts, floods, and other events, are caused by a complex array of factors and Earth system interactions. One important feature that plays a role in these variations is the periodic change of atmospheric and oceanic circulation patterns in the tropical Pacific region, collectively known as El Niño–Southern Oscillation (ENSO) variation. Although its primary climatic effects are concentrated in the tropical Pacific, ENSO has cascading effects that often extend to the Atlantic Ocean region, the interior of Europe and Asia, and the polar regions. These effects, called teleconnections, occur because alterations in low-latitude atmospheric circulation patterns in the Pacific region influence atmospheric circulation in adjacent and downstream systems. As a result, storm tracks are diverted and atmospheric pressure ridges (areas of high pressure) and troughs (areas of low pressure) are displaced from their usual patterns.
As an example, El Niño events occur when the easterly trade winds in the tropical Pacific weaken or reverse direction. This shuts down the upwelling of deep, cold waters off the west coast of South America, warms the eastern Pacific, and reverses the atmospheric pressure gradient in the western Pacific. As a result, air at the surface moves eastward from Australia and Indonesia toward the central Pacific and the Americas. These changes produce high rainfall and flash floods along the normally arid coast of Peru and severe drought in the normally wet regions of northern Australia and Indonesia. Particularly severe El Niño events lead to monsoon failure in the Indian Ocean region, resulting in intense drought in India and East Africa. At the same time, the westerlies and storm tracks are displaced toward the Equator, providing California and the desert Southwest of the United States with wet, stormy winter weather and causing winter conditions in the Pacific Northwest, which are typically wet, to become warmer and drier. Displacement of the westerlies also results in drought in northern China and from northeastern Brazil through sections of Venezuela. Long-term records of ENSO variation from historical documents, tree rings, and reef corals indicate that El Niño events occur, on average, every two to seven years. However, the frequency and intensity of these events vary through time.
The North Atlantic Oscillation (NAO) is another example of an interannual oscillation that produces important climatic effects within the Earth system and can influence climate throughout the Northern Hemisphere. This phenomenon results from variation in the pressure gradient, or the difference in atmospheric pressure between the subtropical high, usually situated between the Azores and Gibraltar, and the Icelandic low, centred between Iceland and Greenland. When the pressure gradient is steep due to a strong subtropical high and a deep Icelandic low (positive phase), northern Europe and northern Asia experience warm, wet winters with frequent strong winter storms. At the same time, southern Europe is dry. The eastern United States also experiences warmer, less snowy winters during positive NAO phases, although the effect is not as great as in Europe. The pressure gradient is dampened when NAO is in a negative mode—that is, when a weaker pressure gradient exists from the presence of a weak subtropical high and Icelandic low. When this happens, the Mediterranean region receives abundant winter rainfall, while northern Europe is cold and dry. The eastern United States is typically colder and snowier during a negative NAO phase.
The ENSO and NAO cycles are driven by feedbacks and interactions between the oceans and atmosphere. Interannual climate variation is driven by these and other cycles, interactions among cycles, and perturbations in the Earth system, such as those resulting from large injections of aerosols from volcanic eruptions. One example of a perturbation due to volcanism is the 1991 eruption of Mount Pinatubo in the Philippines, which led to a decrease in the average global temperature of approximately 0.5 °C (0.9 °F) the following summer.
Decadal variation
Climate varies on decadal timescales, with multiyear clusters of wet, dry, cool, or warm conditions. These multiyear clusters can have dramatic effects on human activities and welfare. For instance, a severe three-year drought in the late 16th century probably contributed to the destruction of Sir Walter Raleigh’s “Lost Colony” at Roanoke Island in what is now North Carolina, and a subsequent seven-year drought (1606–12) led to high mortality at the Jamestown Colony in Virginia. Also, some scholars have implicated persistent and severe droughts as the main reason for the collapse of the Maya civilization in Mesoamerica between 750 and 950 ce; however, discoveries in the early 21st century suggest that war-related trade disruptions played a role, possibly interacting with famines and other drought-related stresses.
Although decadal-scale climate variation is well documented, the causes are not entirely clear. Much decadal variation in climate is related to interannual variations. For example, the frequency and magnitude of ENSO change through time. The early 1990s were characterized by repeated El Niño events, and several such clusters have been identified as having taken place during the 20th century. The steepness of the NAO gradient also changes at decadal timescales; it has been particularly steep since the 1970s.
Recent research has revealed that decadal-scale variations in climate result from interactions between the ocean and the atmosphere. One such variation is the Pacific Decadal Oscillation (PDO), also referred to as the Pacific Decadal Variability (PDV), which involves changing sea surface temperatures (SSTs) in the North Pacific Ocean. The SSTs influence the strength and position of the Aleutian Low, which in turn strongly affects precipitation patterns along the Pacific Coast of North America. PDO variation consists of an alternation between “cool-phase” periods, when coastal Alaska is relatively dry and the Pacific Northwest relatively wet (e.g., 1947–76), and “warm-phase” periods, characterized by relatively high precipitation in coastal Alaska and low precipitation in the Pacific Northwest (e.g., 1925–46, 1977–98). Tree ring and coral records, which span at least the last four centuries, document PDO variation.
A similar oscillation, the Atlantic Multidecadal Oscillation (AMO), occurs in the North Atlantic and strongly influences precipitation patterns in eastern and central North America. A warm-phase AMO (relatively warm North Atlantic SSTs) is associated with relatively high rainfall in Florida and low rainfall in much of the Ohio Valley. However, the AMO interacts with the PDO, and both interact with interannual variations, such as ENSO and NAO, in complex ways . Such interactions may lead to the amplification of droughts, floods, or other climatic anomalies. For example, severe droughts over much of the conterminous United States in the first few years of the 21st century were associated with warm-phase AMO combined with cool-phase PDO. The mechanisms underlying decadal variations, such as PDO and AMO, are poorly understood, but they are probably related to ocean-atmosphere interactions with larger time constants than interannual variations. Decadal climatic variations are the subject of intense study by climatologists and paleoclimatologists.
Climate change since the emergence of civilization
Human societies have experienced climate change since the development of agriculture some 10,000 years ago. These climate changes have often had profound effects on human cultures and societies. They include annual and decadal climate fluctuations such as those described above, as well as large-magnitude changes that occur over centennial to multimillennial timescales. Such changes are believed to have influenced and even stimulated the initial cultivation and domestication of crop plants, as well as the domestication and pastoralization of animals. Human societies have changed adaptively in response to climate variations, although evidence abounds that certain societies and civilizations have collapsed in the face of rapid and severe climatic changes.
Centennial-scale variation
Historical records as well as proxy records (particularly tree rings, corals, and ice cores) indicate that climate has changed during the past 1,000 years at centennial timescales; that is, no two centuries have been exactly alike. During the past 150 years, the Earth system has emerged from a period called the Little Ice Age, which was characterized in the North Atlantic region and elsewhere by relatively cool temperatures. The 20th century in particular saw a substantial pattern of warming in many regions. Some of this warming may be attributable to the transition from the Little Ice Age or other natural causes. However, many climate scientists believe that much of the 20th-century warming, especially in the later decades, resulted from atmospheric accumulation of greenhouse gases (especially carbon dioxide, CO2).
The Little Ice Age is best known in Europe and the North Atlantic region, which experienced relatively cool conditions between the early 14th and mid-19th centuries. This was not a period of uniformly cool climate, since interannual and decadal variability brought many warm years. Furthermore, the coldest periods did not always coincide among regions; some regions experienced relatively warm conditions at the same time others were subjected to severely cold conditions. Alpine glaciers advanced far below their previous (and present) limits, obliterating farms, churches, and villages in Switzerland, France, and elsewhere. Frequent cold winters and cool, wet summers ruined wine harvests and led to crop failures and famines over much of northern and central Europe. The North Atlantic cod fisheries declined as ocean temperatures fell in the 17th century. The Norse colonies on the coast of Greenland were cut off from the rest of Norse civilization during the early 15th century as pack ice and storminess increased in the North Atlantic. The western colony of Greenland collapsed through starvation, and the eastern colony was abandoned. In addition, Iceland became increasingly isolated from Scandinavia.
The Little Ice Age was preceded by a period of relatively mild conditions in northern and central Europe. This interval, known as the Medieval Warm Period, occurred from approximately ad 1000 to the first half of the 13th century. Mild summers and winters led to good harvests in much of Europe. Wheat cultivation and vineyards flourished at far higher latitudes and elevations than today. Norse colonies in Iceland and Greenland prospered, and Norse parties fished, hunted, and explored the coast of Labrador and Newfoundland. The Medieval Warm Period is well documented in much of the North Atlantic region, including ice cores from Greenland. Like the Little Ice Age, this time was neither a climatically uniform period nor a period of uniformly warm temperatures everywhere in the world. Other regions of the globe lack evidence for high temperatures during this period.
Much scientific attention continues to be devoted to a series of severe droughts that occurred between the 11th and 14th centuries. These droughts, each spanning several decades, are well documented in tree-ring records across western North America and in the peatland records of the Great Lakes region. The records appear to be related to ocean temperature anomalies in the Pacific and Atlantic basins, but they are still inadequately understood. The information suggests that much of the United States is susceptible to persistent droughts that would be devastating for water resources and agriculture.

Millennial and multimillennial variation
The climatic changes of the past thousand years are superimposed upon variations and trends at both millennial timescales and greater. Numerous indicators from eastern North America and Europe show trends of increased cooling and increased effective moisture during the past 3,000 years. For example, in the Great Lakes–St. Lawrence regions along the U.S.-Canadian border, water levels of the lakes rose, peatlands developed and expanded, moisture-loving trees such as beech and hemlock expanded their ranges westward, and populations of boreal trees, such as spruce and tamarack, increased and expanded southward. These patterns all indicate a trend of increased effective moisture, which may indicate increased precipitation, decreased evapotranspiration due to cooling, or both. The patterns do not necessarily indicate a monolithic cooling event; more complex climatic changes probably occurred. For example, beech expanded northward and spruce southward during the past 3,000 years in both eastern North America and western Europe. The beech expansions may indicate milder winters or longer growing seasons, whereas the spruce expansions appear related to cooler, moister summers. Paleoclimatologists are applying a variety of approaches and proxies to help identify such changes in seasonal temperature and moisture during the Holocene Epoch.
Just as the Little Ice Age was not associated with cool conditions everywhere, so the cooling and moistening trend of the past 3,000 years was not universal. Some regions became warmer and drier during the same time period. For example, northern Mexico and the Yucatan experienced decreasing moisture in the past 3,000 years. Heterogeneity of this type is characteristic of climatic change, which involves changing patterns of atmospheric circulation. As circulation patterns change, the transport of heat and moisture in the atmosphere also changes. This fact explains the apparent paradox of opposing temperature and moisture trends in different regions.
The trends of the past 3,000 years are just the latest in a series of climatic changes that occurred over the past 11,700 years or so—the interglacial period referred to as the Holocene Epoch. At the start of the Holocene, remnants of continental glaciers from the last glaciation still covered much of eastern and central Canada and parts of Scandinavia. These ice sheets largely disappeared by 6,000 years ago. Their absence— along with increasing sea surface temperatures, rising sea levels (as glacial meltwater flowed into the world’s oceans), and especially changes in the radiation budget of Earth’s surface owing to Milankovitch variations (changes in the seasons resulting from periodic adjustments of Earth’s orbit around the Sun)—affected atmospheric circulation. The diverse changes of the past 10,000 years across the globe are difficult to summarize in capsule, but some general highlights and large-scale patterns are worthy of note. These include the presence of early to mid-Holocene thermal maxima in various locations, variation in ENSO patterns, and an early to mid-Holocene amplification of the Indian Ocean monsoon.
Thermal maxima
Many parts of the globe experienced higher temperatures than today some time during the early to mid-Holocene. In some cases the increased temperatures were accompanied by decreased moisture availability. Although the thermal maximum has been referred to in North America and elsewhere as a single widespread event (variously referred to as the “Altithermal,” “Xerothermic Interval,” “Climatic Optimum,” or “Thermal Optimum”), it is now recognized that the periods of maximum temperatures varied among regions. For example, northwestern Canada experienced its highest temperatures several thousand years earlier than central or eastern North America. Similar heterogeneity is seen in moisture records. For instance, the record of the prairie-forest boundary in the Midwestern region of the United States shows eastward expansion of prairie in Iowa and Illinois 6,000 years ago (indicating increasingly dry conditions), whereas Minnesota’s forests expanded westward into prairie regions at the same time (indicating increasing moisture). The Atacama Desert, located primarily in present-day Chile and Bolivia, on the western side of South America, is one of the driest places on Earth today, but it was much wetter during the early Holocene when many other regions were at their driest.
The primary driver of changes in temperature and moisture during the Holocene was orbital variation, which slowly changed the latitudinal and seasonal distribution of solar radiation on Earth’s surface and atmosphere. However, the heterogeneity of these changes was caused by changing patterns of atmospheric circulation and ocean currents.
ENSO variation in the Holocene
Because of the global importance of ENSO variation today, Holocene variation in ENSO patterns and intensity is under serious study by paleoclimatologists. The record is still fragmentary, but evidence from fossil corals, tree rings, lake records, climate modeling, and other approaches is accumulating that suggests that (1) ENSO variation was relatively weak in the early Holocene, (2) ENSO has undergone centennial to millennial variations in strength during the past 11,700 years, and (3) ENSO patterns and strength similar to those currently in place developed within the past 5,000 years. This evidence is particularly clear when comparing ENSO variation over the past 3,000 years to today’s patterns. The causes of long-term ENSO variation are still being explored, but changes in solar radiation owing to Milankovitch variations are strongly implicated by modeling studies.
Amplification of the Indian Ocean monsoon
Much of Africa, the Middle East, and the Indian subcontinent are under the strong influence of an annual climatic cycle known as the Indian Ocean monsoon. The climate of this region is highly seasonal, alternating between clear skies with dry air (winter) and cloudy skies with abundant rainfall (summer). Monsoon intensity, like other aspects of climate, is subject to interannual, decadal, and centennial variations, at least some of which are related to ENSO and other cycles. Abundant evidence exists for large variations in monsoon intensity during the Holocene Epoch. Paleontological and paleoecological studies show that large portions of the region experienced much greater precipitation during the early Holocene (11,700–6,000 years ago) than today. Lake and wetland sediments dating to this period have been found under the sands of parts of the Sahara Desert. These sediments contain fossils of elephants, crocodiles, hippopotamuses, and giraffes, together with pollen evidence of forest and woodland vegetation. In arid and semiarid parts of Africa, Arabia, and India, large and deep freshwater lakes occurred in basins that are now dry or are occupied by shallow, saline lakes. Civilizations based on plant cultivation and grazing animals, such as the Harappan civilization of northwestern India and adjacent Pakistan, flourished in these regions, which have since become arid.
These and similar lines of evidence, together with paleontological and geochemical data from marine sediments and climate-modeling studies, indicate that the Indian Ocean monsoon was greatly amplified during the early Holocene, supplying abundant moisture far inland into the African and Asian continents. This amplification was driven by high solar radiation in summer, which was approximately 7 percent higher 11,700 years ago than today and resulted from orbital forcing (changes in Earth’s eccentricity, precession, and axial tilt). High summer insolation resulted in warmer summer air temperatures and lower surface pressure over continental regions and, hence, increased inflow of moisture-laden air from the Indian Ocean to the continental interiors. Modeling studies indicate that the monsoonal flow was further amplified by feedbacks involving the atmosphere, vegetation, and soils. Increased moisture led to wetter soils and lusher vegetation, which in turn led to increased precipitation and greater penetration of moist air into continental interiors. Decreasing summer insolation during the past 4,000–6,000 years led to the weakening of the Indian Ocean monsoon.