ecological restoration

conservation
print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: habitat restoration, restoration

ecological restoration, the process of repairing sites in nature whose biological communities (that is, interacting groups of various species in a common location) and ecosystems have been degraded or destroyed. In many ecosystems, humans have altered local native populations of plants and animals, introduced invasive species, converted natural communities to extractive use (such as agriculture or mining), fouled waters, and degraded soil resources. Ecological restoration focuses on repairing the damage human activities have caused to natural ecosystems and seeks to return them to an earlier state or to another state that is closely related to one unaltered by human activities. Ecological restoration is distinguished from the practice of conservation, which is primarily concerned with preventing further losses to ecosystems.

Concepts

To repair and restore ecosystems, restoration specialists apply concepts from the field of ecology. For example, in temperate coniferous forests, plant species provide food and shelter for various animals. The forest ecosystem provides important services, such as nutrient cycling, both for the animals that live there and for humans who use the forest for timber and recreation. To remain healthy, many forest species rely on periodic disturbances such as wildfires. However, some disturbances, such as deforestation, are so damaging that they may instead impair the normal functioning of the forest by increasing soil erosion or by eliminating wildlife habitat. Thus, restorationists must understand the ecosystem’s pattern of ecological disturbances. (Disturbance ecology is the subdiscipline of ecology that explores the causes and consequences of both natural and anthropogenic [human-caused] disturbances.) In order to restore a deforested site, restoration ecologists often attempt to reverse the ecological changes caused by the removal of trees and other plants, the displacement of animals, and changes to the now-exposed soil (which may be more prone to drying and erosion after deforestation). Ecological succession, the long-term evolution of the structure of an ecosystem’s biological community that follows a disturbance event, is also an important part of the restoration process.

Planning

The restoration process begins with an assessment of the degraded site. The current site conditions should be thoroughly examined to identify the need for restoration and any potential actions required to restore the site. Restorationists should consider the causes of degradation, the likelihood that the degradation can be reversed or lessened, and the ways in which restoration can be accomplished. Early in the planning process, restorationists should identify the necessary resources (such as funding, labour, equipment, plant materials, and technical knowledge) that directly affect the project’s feasibility. Support and participation from local communities and government institutions early in the planning process and throughout implementation can be invaluable.

A critical step in restoration planning is to establish realistic goals. Pre-disturbance conditions, often represented by nearby “reference sites,” are common restoration targets, although actual targets are tailored to local ecological, social, legal, and economic conditions. In addition, preventing further loss of protected populations or habitat is a common motivator of restoration. Other goals may include erosion control, rangeland forage production, protection of wildlife habitat, and preservation of cultural landscapes. Planning for climate change has become increasingly important. Once the goals of the restoration project have been established, the next step is to outline objectives and identify measures of success. Clearly articulated objectives and regular assessment of measurable progress toward those objectives provide information on the trajectory and success of the project, including how and when restoration activities should be modified.