expanding universe, dynamic state of the extragalactic realm, the discovery of which transformed 20th-century cosmology. The development of general relativity and its application to cosmology by German-born physicist Albert Einstein, Dutch mathematician Willem de Sitter, and other theoreticians, along with the detection of extragalactic redshift (a shift to the longer wavelengths of light from galaxies beyond the Milky Way) by American astronomer Vesto Slipher, led to the realization in the 1920s that all galaxies are receding. American astronomer Edwin Hubble correlated these observations in mathematical form to provide evidence that the universe is expanding. The discovery of the 2.7 K cosmic microwave background radiation in 1965 by American physicists Arno Penzias and Robert Wilson was convincing evidence that the universe originated 13.8 billion years ago from a very dense and hot state in the big bang.
Einstein, the big bang, and the expansion of the universeAfter Albert Einstein published his theory of gravity, researchers realized that it predicted that the universe should be expanding, a finding confirmed by observations. This video is an episode in Brian Greene's Daily Equation series.
For much of the 20th century, it was an open question whether the universe is open (of infinite extent in space) or closed (of finite extent) and whether the universe in the future will continue to expand indefinitely or will eventually collapse back into an extremely dense congested state. The mass in galaxies observed directly, when averaged over cosmological distances, is estimated to be only a few percent of the amount required to close the universe. However, the dark matter that has been deduced from various dynamic arguments is about 23 percent of the universe, and dark energy supplies the remaining amount, bringing the total average mass density up to 100 percent of the closure density.
Wilkinson Microwave Anisotropy ProbeA full-sky map produced by the Wilkinson Microwave Anisotropy Probe (WMAP) showing cosmic background radiation, a very uniform glow of microwaves emitted by the infant universe more than 13 billion years ago. Colour differences indicate tiny fluctuations in the intensity of the radiation, a result of tiny variations in the density of matter in the early universe. According to inflation theory, these irregularities were the “seeds” that became the galaxies. WMAP's data support the big bang and inflation models, and cosmic microwave background is at the farthest limits of the observable universe.
cosmic microwave background
electromagnetic radiation
Also known as: CMB, cosmic background radiation, three-degree blackbody radiation
Beginning in 1948, the American cosmologistGeorge Gamow and his coworkers, Ralph Alpher and Robert Herman, investigated the idea that the chemical elements might have been synthesized by thermonuclear reactions that took place in a primeval fireball. According to their calculations, the high temperature associated with the early universe would have given rise to a thermal radiation field, which has a unique distribution of intensity with wavelength (known as Planck’s radiation law), that is a function only of the temperature. As the universe expanded, the temperature would have dropped, each photon being redshifted by the cosmological expansion to longer wavelength, as the American physicist Richard C. Tolman had already shown in 1934. By the present epoch the radiation temperature would have dropped to very low values, about 5 kelvins above absolute zero (0 kelvin [K], or −273 °C [−460 °F]) according to the estimates of Alpher and Herman.
Interest in these calculations waned among most astronomers when it became apparent that the lion’s share of the synthesis of elements heavier than helium must have occurred inside stars rather than in a hot big bang. In the early 1960s physicists at Princeton University, New Jersey, as well as in the Soviet Union, took up the problem again and began to build a microwave receiver that might detect, in the words of the Belgian cleric and cosmologist Georges Lemaître, “the vanished brilliance of the origin of the worlds.”
The actual discovery of the relict radiation from the primeval fireball, however, occurred by accident. In experiments conducted in connection with the first Telstar communication satellite, two scientists, Arno Penzias and Robert Wilson, of the Bell Telephone Laboratories, Holmdel, New Jersey, measured excess radio noise that seemed to come from the sky in a completely isotropic fashion (that is, the radio noise was the same in every direction). When they consulted Bernard Burke of the Massachusetts Institute of Technology, Cambridge, about the problem, Burke realized that Penzias and Wilson had most likely found the cosmic background radiation that Robert H. Dicke, P.J.E. Peebles, and their colleagues at Princeton were planning to search for. Put in touch with one another, the two groups published simultaneously in 1965 papers detailing the prediction and discovery of a universal thermal radiation field with a temperature of about 3 K.
Precise measurements made by the Cosmic Background Explorer (COBE) satellite launched in 1989 determined the spectrum to be exactly characteristic of a blackbody at 2.735 K. The velocity of the satellite about Earth, Earth about the Sun, the Sun about the Galaxy, and the Galaxy through the universe actually makes the temperature seem slightly hotter (by about one part in 1,000) in the direction of motion rather than away from it. The magnitude of this effect—the so-called dipole anisotropy—allows astronomers to determine that the Local Group (the group of galaxies containing the Milky Way Galaxy) is moving at a speed of about 600 km per second (km/s; 400 miles per second [miles/s]) in a direction that is 45° from the direction of the Virgo cluster of galaxies. Such motion is not measured relative to the galaxies themselves (the Virgo galaxies have an average velocity of recession of about 1,000 km/s [600 miles/s] with respect to the Milky Way system) but relative to a local frame of reference in which the cosmic microwave background radiation would appear as a perfect Planck spectrum with a single radiation temperature.
The COBE satellite carried instrumentation aboard that allowed it to measure small fluctuations in intensity of the background radiation that would be the beginning of structure (i.e., galaxies and clusters of galaxies) in the universe. The satellite transmitted an intensity pattern in angular projection at a wavelength of 0.57 cm after the subtraction of a uniform background at a temperature of 2.735 K. Bright regions at the upper right and dark regions at the lower left showed the dipole asymmetry. A bright strip across the middle represented excess thermal emission from the Milky Way. To obtain the fluctuations on smaller angular scales, it was necessary to subtract both the dipole and the galactic contributions. An image was obtained showing the final product after the subtraction. Patches of light and dark represented temperature fluctuations that amount to about one part in 100,000—not much higher than the accuracy of the measurements. Nevertheless, the statistics of the distribution of angular fluctuations appeared different from random noise, and so the members of the COBE investigative team found the first evidence for the departure from exact isotropy that theoretical cosmologists long predicted must be there in order for galaxies and clusters of galaxies to condense from an otherwise structureless universe. These fluctuations correspond to distance scales on the order of 109light-years across (still larger than the largest material structures seen in the universe, such as the enormous grouping of galaxies dubbed the “Great Wall”).
Know about the Millennium Simulation at the Max Planck Institute for Astrophysics and learn how to simulate the universe on a personal computerAn overview of the Millennium Simulation run by researchers at the Max Planck Institute for Astrophysics in Germany, followed by a tutorial on how to simulate the universe on a home computer.
The Wilkinson Microwave Anisotropy Probe (WMAP) was launched in 2001 to observe the fluctuations seen by COBE in greater detail and with more sensitivity. The conditions at the beginning of the universe left their imprint on the size of the fluctuations. WMAP’s accurate measurements showed that the early universe was 63 percent dark matter, 15 percent photons, 12 percent atoms, and 10 percent neutrinos. Today the universe is 72.6 percent dark energy, 22.8 percent dark matter, and 4.6 percent atoms. Although neutrinos are now a negligible component of the universe, they form their own cosmic background, which was discovered by WMAP. WMAP also showed that the first stars in the universe formed half a billion years after the big bang.
Are you a student?
Get a special academic rate on Britannica Premium.
Our editors will review what you’ve submitted and determine whether to revise the article.
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies.
Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
The Editors of Encyclopaedia Britannica. "expanding universe". Encyclopedia Britannica, 5 Apr. 2025, https://www.britannica.com/science/expanding-universe. Accessed 11 June 2025.
Our editors will review what you’ve submitted and determine whether to revise the article.
print
Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies.
Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Shu, Frank H.. "cosmic microwave background". Encyclopedia Britannica, 5 Jun. 2025, https://www.britannica.com/science/cosmic-microwave-background. Accessed 11 June 2025.