- Related Topics:
- liquid crystal
- solution
- nonionic liquid
- liquid mixture
- pure liquid
- On the Web:
- Openstax - Chemistry 2e - Properties of Liquids (Jan. 16, 2025)
Near the end of the 19th century, the properties of electrolyte solutions were investigated extensively by the early workers in physical chemistry. A suggestion of Svante August Arrhenius, a Swedish chemist, that salts of strong acids and bases (for example, sodium chloride) are completely dissociated into ions when in aqueous solution received strong support from electrical-conductivity measurements and from molecular-weight studies (freezing-point depression, boiling-point elevation, and osmotic pressure). These studies showed that the number of solute particles was larger than it would be if no dissociation occurred. For example, a 0.001 molal solution of a uni-univalent electrolyte (one in which each ion has a valence, or charge, of 1, and, when dissociated, two ions are produced) such as sodium chloride, Na+Cl-, exhibits colligative properties corresponding to a nonelectrolyte solution whose molality is 0.002; the colligative properties of a 0.001 molal solution of a univalent-divalent electrolyte (yielding three ions) such as magnesium bromide, Mg2+Br2-, correspond to those of a nonelectrolyte solution with a molality of 0.003. At somewhat higher concentrations the experimental data showed some inconsistencies with Arrhenius’ dissociation theory, and initially these were ascribed to incomplete, or partial, dissociation. In the years 1920–30, however, it was shown that these inconsistencies could be explained by electrostatic interactions (Coulomb forces) of the ions in solution. The current view of electrolyte solutions is that, in water at normal temperatures, the salts of strong acids and strong bases are completely dissociated into ions at all concentrations up to the solubility limit. At high concentrations Coulombic interactions may cause the formation of ion pairs, which implies that the ions are not dispersed uniformly in the solution but have a tendency to form two-ion aggregates in which a positive ion seeks the close proximity of a negative ion and vice versa. While the theory of dilute electrolyte solutions is well advanced, no adequate theory exists for concentrated electrolyte solutions primarily because of the long-range Coulomb forces that dominate in ionic solutions.
The equilibrium properties of electrolyte solutions can be studied experimentally by electrochemical measurements, freezing-point depressions, solubility determinations, osmotic pressures, or measurements of vapour pressure. Most electrolytes, such as salts, are nonvolatile at ordinary temperature, and, in that event, the vapour pressure exerted by the solution is the same as the partial pressure of the solvent. The activity coefficient of the solvent can, therefore, be found from total-pressure measurements, and, using the Gibbs-Duhem equation, it is then possible to calculate the activity coefficient of the electrolyte solute. This activity coefficient is designated by γ± to indicate that it is a mean activity coefficient for the positive and negative ions. Since it is impossible to isolate positive ions and negative ions into separate containers, it is not possible to determine individual activity coefficients for the positive ions and for the negative ions. The mean activity coefficient γ± is so defined that it approaches a value of unity at very low molality where the ions are so far apart that they exert negligible influence on one another. For small concentrations of electrolyte, the theory of Peter Debye, a Dutch-born American physical chemist, and Erich Hückel, a German chemist, relates γ± to the ionic strength, which is the sum of the products of the concentration of each ion (in moles per litre) and the square of its charge; the equation predicts that γ± decreases with rising ionic strength in agreement with experiment at very low ionic strength; at higher ionic strength, however, γ± rises, and in some cases γ± is greater than 1. The derivation of the Debye-Hückel theory clearly shows that it is limited to low concentrations. Many attempts have been made to extend the Debye-Hückel equation to higher electrolyte concentrations. One of the more successful attempts is based on the idea that the ions are solvated, which means that every ion is surrounded by a tight-fitting shell of solvent molecules.
The concept of solvation is often used to explain properties of aqueous solutions; one well-known property is the salting-out effect, in which the solubility of a nonelectrolyte in water is decreased when electrolyte is added. For example, the solubility of ethyl ether in water at 25° C is 0.91 mole percent, but, in an aqueous solution containing 15 weight percent sodium chloride, it is only 0.13 mole percent. This decrease in solubility can be explained by postulating that some of the water molecules cannot participate in the dissolution of the ether because they are tightly held (solvated) by sodium and chloride ions.
Electrolyte solutions have long been of interest in industry since many common inorganic chemicals are directly obtained, or else separated, by crystallization from aqueous solution. Further, many important chemical and metallurgical products (e.g., aluminum) are obtained or refined by electrochemical processes that occur in liquid solution. In recent years there has been renewed interest in electrolyte solutions because of their relevance to fuel cells as a possible source of power for automobiles.
The properties of electrolyte solutions also have large importance in physiology. Many molecules that occur in biological systems bear electric charges; a large molecule that has a positive electric charge at one end and a negative charge at the other is called a zwitterion. Very large molecules, such as those of proteins, may have numerous positive and negative charges; such molecules are called polyelectrolytes. In solution, the conformation (i.e., the three-dimensional structure) of a large, charged molecule is strongly dependent on the ionic strength of the dissolving medium; for example, depending on the nature and concentration of salts present in the solvent, a polyelectrolyte molecule may coagulate into a ball, it may stretch out like a rod, or it may form a coil or helix. The conformation, in turn, is closely related to the molecule’s physiological function. As a result, improved understanding of the properties of electrolyte solutions has direct consequences in molecular biology and medicine.