Methods in morphology
Chemical techniques
The methods of investigating gross structure depend on careful dissection, or cutting apart, of an organism and on accurate descriptions of the parts. The study of the structure of tissues and cells has been extended by the techniques of autoradiography and histochemistry. In the former, a tissue is supplied with a radioactive substance and allowed to utilize it for an appropriate period of time, after which the tissue is prepared and placed in contact with a special photographic emulsion. Silver grains in the emulsion in contact with radioactive substances darken; thus, the location of the dark spots indicates the position at which the radioactive substance was concentrated in the tissue. Histochemistry involves the differential staining of cells (i.e., using dyes that stain specific structural and molecular components) to reflect the chemical differences of the constituents. By choosing appropriate dyes, the histochemist is able, for example, to determine the acidity or alkalinity of the chemical compounds that make up cell components. In addition, dyes that stain specific molecular constituents such as glycogen, DNA, RNA, and protein also are used. The histochemist is able to locate a specific enzyme in a thin slice of tissue, to provide the specific substance with which the enzyme reacts to form a product, and to add a compound that reacts with the product to form an insoluble coloured compound the location of which is relatively easy to determine. In this way, information has been obtained about the specific location of enzymes within the cell.
Microscopic techniques
Histologists and cytologists utilize microscopic techniques—light microscopy, phase contrast microscopy, interference microscopy, polarization microscopy, fluorescent microscopy, and electron microscopy—to investigate certain aspects of cell structure. Phase contrast microscopy is widely used to study the structure of living cells because, with such apparatus, internal structures can be observed without killing and staining the cell. In addition, motion pictures of dividing cells or moving cells can be made using phase contrast microscopy.
The interference microscope involves passing two separate beams of light through the specimen. With the appropriate instrument, the mass of material per unit area of the specimen can be determined, and contour mapping of small objects is possible.
Crystalline or fibrous elements, both of which are characterized by an orderly or layered molecular structure, are studied with a polarizing microscope; the polarizing microscope has been particularly useful in studying the detailed structure of bone.
In fluorescence microscopy, the images seen are molecules of fluorescent dyes added to cells that attach to specific cellular components. Appropriate filters are required to insure that only the light of longer wavelength contributes to the image. Fluorescent antibodies have been used to locate specific kinds of proteins and other materials in certain cells of a tissue or in certain regions of a cell. The antibodies are prepared by injecting into a rabbit an antigen (e.g., the protein myosin), which stimulates white blood cells called lymphocytes to synthesize antibodies that react specifically with the antigen. After the antibodies are isolated and purified, the fluorescent dye, fluorescein, becomes attached to them by a chemical reaction. If the fluorescent antibodies are spread over a tissue, they attach specifically to the molecules that stimulated their formation (myosin). The fluorescence microscope reveals the sites containing the antigen–antibody complex as bright luminescent areas in a dark background.
In the scanning electron microscope, a moving spot of electrons (negatively charged particles) is used to scan an object and to produce an image similar to that which appears on a television screen. In this manner, photographs with a three-dimensional appearance can be produced. With the transmission electron microscope, a beam of electrons passes through an object, such as a cell, and is focused on the other side onto a fluorescent screen or a photographic plate. The beam of electrons in the scanning electron microscope is focused and then scanned across the specimen. The electrons that leave the specimen, which are not necessarily the same electrons that strike it, are then used to control the beam of a cathode-ray picture tube. Scanning electron microscopes allow photographs to be taken not only of large molecules such as DNA but of very small objects—individual atoms of elements such as uranium or thorium.
Claude A. Villee