mountain
- Key People:
- Alfred Elis Törnebohm
- Related Topics:
- volcanic dome
- nunatak
- mesa
- butte
- ridge
News •
mountain, landform that rises prominently above its surroundings, generally exhibiting steep slopes, a relatively confined summit area, and considerable local relief. Mountains generally are understood to be larger than hills, but the term has no standardized geological meaning. Very rarely do mountains occur individually. In most cases, they are found in elongated ranges or chains. When an array of such ranges is linked together, it constitutes a mountain belt. For a list of selected mountains of the world, see below.
A mountain belt is many tens to hundreds of kilometres wide and hundreds to thousands of kilometres long. It stands above the surrounding surface, which may be a coastal plain, as along the western Andes in northern Chile, or a high plateau, as within and along the Plateau of Tibet in southwest China. Mountain ranges or chains extend tens to hundreds of kilometres in length. Individual mountains are connected by ridges and separated by valleys. Within many mountain belts are plateaus, which stand high but contain little relief. Thus, for example, the Andes constitute a mountain belt that borders the entire west coast of South America; within it are both individual ranges, such as the Cordillera Blanca in which lies Peru’s highest peak, Huascarán, and the high plateau, the Altiplano, in southern Peru and western Bolivia.
Geomorphic characteristics
Mountainous terrains have certain unifying characteristics. Such terrains have higher elevations than do surrounding areas. Moreover, high relief exists within mountain belts and ranges. Individual mountains, mountain ranges, and mountain belts that have been created by different tectonic processes, however, are often characterized by different features.
Chains of active volcanoes, such as those occurring at island arcs, are commonly marked by individual high mountains separated by large expanses of low and gentle topography. In some chains, namely those associated with “hot spots” (see below), only the volcanoes at one end of the chain are active. Thus, those volcanoes stand high, but with increasing distance away from them erosion has reduced the sizes of volcanic structures to an increasing degree.
The folding of layers of sedimentary rocks with thicknesses of hundreds of metres to a few kilometres often leaves long parallel ridges and valleys termed fold belts, as, for example, in the Valley and Ridge province of Pennsylvania in the eastern United States. The more resistant rocks form ridges, and the valleys are underlain by weaker ones. These fold belts commonly include segments where layers of older rocks have been thrust or pushed up and over younger rocks. Such segments are known as fold and thrust belts. Typically their topography is not as regular as where folding is the most important process, but it is usually dominated by parallel ridges of resistant rock divided by valleys of weaker rock, as in the eastern flank of the Canadian Rocky Mountains or in the Jura Mountains of France and Switzerland.
Most fold and thrust belts are bounded on one side, or lie parallel to, a belt or terrain of crystalline rocks. These are metamorphic and igneous rocks that in most cases solidified at depths of several kilometres or more and that are more resistant to erosion than the sedimentary rocks deposited on top of them. These crystalline terrains typically contain the highest peaks in any mountain belt and include the highest belt in the world, the Himalayas, which was formed by the thrusting of crystalline rocks up onto the surface of the Earth. The great heights exist because of the resistance of the rocks to erosion and because the rates of continuing uplift are the highest in these areas. The topography rarely is as regularly oriented as in fold and thrust belts.
In certain areas, blocks or isolated masses of rock have been elevated relative to adjacent areas to form block-fault mountains or ranges. In some places, block-fault ranges with an overall common orientation coalesce to define a mountain belt or chain, but in others the ranges may be isolated.
Block faulting can occur when blocks are thrust, or pushed, over neighbouring valleys, as has occurred in the Rocky Mountains of Colorado, Wyoming, and Utah in the western United States or as is now occurring in the Tien Shan, an east–west range in western China and Central Asia. Within individual ranges, which are usually a few hundred kilometres long and several tens of kilometres wide, crystalline rocks commonly crop out. On a large scale, there is a clear orientation of such ranges, but within them the landforms are controlled more by the variations in erosion than by tectonic processes.
Block faulting also occurs where blocks are pulled apart, causing a subsidence of the intervening valley between diverging blocks. In this case, alternating basins and ranges form. The basins eventually fill with sediment, and the ranges—typically tens of kilometres long and from a few to 20–30 kilometres wide—often tilt, with steep relief on one side and a gentle slope on the other. The uniformity of the gently tilted slope owes its existence to long periods of erosion and deposition before tilting, sometimes with a capping of resistant lava flows on this surface prior to tilting and faulting. Both the Tetons of Wyoming and the Sierra Nevada of California were formed by blocks being tilted up toward the east; major faults allowed the blocks on their east sides to drop steeply down several thousand metres and thereby created steep eastern slopes.
In some areas, a single block or a narrow zone of blocks has subsided between neighbouring blocks or plateaus that moved apart to form a rift valley between them. Mountains with steep inward slopes and gentle outward slopes often form on the margins of rift valleys. Less commonly, large areas that are pulled apart and subside leave between them an elevated block with steep slopes on both sides. An example of this kind of structure, called a horst, is the Ruwenzori in East Africa.
Finally, in certain areas, including those that once were plateaus or broad uplifted regions, erosion has left what are known as residual mountains. Many such mountains are isolated and not part of any discernible chain, as, for instance, Mount Katahdin in Maine in the northeastern United States. Some entire chains (e.g., the Appalachians in North America or the Urals in Russia), which were formed hundreds of millions of years ago, remain in spite of a long history of erosion. Most residual chains and individual mountains are characterized by low elevations; however, both gentle and precipitous relief can exist, depending on the degree of recent erosion.