Biological factors affecting human fertility

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Reproduction is a quintessentially biological process, and hence all fertility analyses must consider the effects of biology. Such factors, in rough chronological order, include:

the age of onset of potential fertility (or fecundability in demographic terminology);

the degree of fecundability—i.e., the monthly probability of conceiving in the absence of contraception;

the incidence of spontaneous abortion and stillbirth;

the duration of temporary infecundability following the birth of a child; and

the age of onset of permanent sterility.

The age at which women become fecund apparently declined significantly during the 20th century; as measured by the age of menarche (onset of menstruation), British data suggest a decline from 16–18 years in the mid-19th century to less than 13 years in the late 20th century. This decline is thought to be related to improving standards of nutrition and health. Since the average age of marriage in western Europe has long been far higher than the age of menarche, and since most children are born to married couples, this biological lengthening of the reproductive period is unlikely to have had major effects upon realized fertility in Europe. In settings where early marriage prevails, however, declining age at menarche could increase lifetime fertility.

Fecundability also varies among women past menarche. The monthly probabilities of conception among newlyweds are commonly in the range of 0.15 to 0.25; that is, there is a 15–25-percent chance of conception each month. This fact is understandable when account is taken of the short interval (about two days) within each menstrual cycle during which fertilization can take place. Moreover, there appear to be cycles during which ovulation does not occur. Finally, perhaps one-third or more of fertilized ova fail to implant in the uterus or, even if they do implant, spontaneously abort during the ensuing two weeks, before pregnancy would be recognized. As a result of such factors, women of reproductive age who are not using contraceptive methods can expect to conceive within five to 10 months of becoming sexually active. As is true of all biological phenomena, there is surely a distribution of fecundability around average levels, with some women experiencing conception more readily than others.

Spontaneous abortion of recognized pregnancies and stillbirth also are fairly common, but their incidence is difficult to quantify. Perhaps 20 percent of recognized pregnancies fail spontaneously, most in the earlier months of gestation.

Following the birth of a child, most women experience a period of temporary infecundability, or biological inability to conceive. The length of this period seems to be affected substantially by breast-feeding. In the absence of breast-feeding, the interruption lasts less than two months. With lengthy, frequent breast-feeding it can last one or two years. This effect is thought to be caused by a complex of neural and hormonal factors stimulated by suckling.

A woman’s fecundability typically peaks in her 20s and declines during her 30s; by their early 40s as many as 50 percent of women are affected by their own or their husbands’ sterility. After menopause, essentially all women are sterile. The average age at menopause is in the late 40s, although some women experience it before reaching 40 and others not until nearly 60.

Contraception

Contraceptive practices affect fertility by reducing the probability of conception. Contraceptive methods vary considerably in their theoretical effectiveness and in their actual effectiveness in use (“use-effectiveness”). Modern methods such as oral pills and intrauterine devices (IUDs) have use-effectiveness rates of more than 95 percent. Older methods such as the condom and diaphragm can be more than 90-percent effective when used regularly and correctly, but their average use-effectiveness is lower because of irregular or incorrect use.

The effect upon fertility of contraceptive measures can be dramatic: if fecundability is 0.20 (a 20-percent chance of pregnancy per month of exposure), then a 95-percent effective method will reduce this to 0.01 (a 1-percent chance).

Abortion

Induced abortion reduces fertility not by affecting fecundability but by terminating pregnancy. Abortion has long been practiced in human societies and is quite common in some settings. The officially registered fraction of pregnancies terminated by abortion exceeds one-third in some countries, and significant numbers of unregistered abortions probably occur even in countries reporting very low rates.

Sterilization

Complete elimination of fecundability can be brought about by sterilization. The surgical procedures of tubal ligation and vasectomy have become common in diverse nations and cultures. In the United States, for example, voluntary sterilization has become the most prevalent single means of terminating fertility, typically adopted by couples who have achieved their desired family size. In India, sterilization has been encouraged on occasion by various government incentive programs and, for a short period during the 1970s, by quasi-coercive measures.