News •
In 1905 Einstein extended Planck’s hypothesis to explain the photoelectric effect, which is the emission of electrons by a metal surface when it is irradiated by light or more-energetic photons. The kinetic energy of the emitted electrons depends on the frequency ν of the radiation, not on its intensity; for a given metal, there is a threshold frequency ν0 below which no electrons are emitted. Furthermore, emission takes place as soon as the light shines on the surface; there is no detectable delay. Einstein showed that these results can be explained by two assumptions: (1) that light is composed of corpuscles or photons, the energy of which is given by Planck’s relationship, and (2) that an atom in the metal can absorb either a whole photon or nothing. Part of the energy of the absorbed photon frees an electron, which requires a fixed energy W, known as the work function of the metal; the rest is converted into the kinetic energy meu2/2 of the emitted electron (me is the mass of the electron and u is its velocity). Thus, the energy relation is If ν is less than ν0, where hν0 = W, no electrons are emitted. Not all the experimental results mentioned above were known in 1905, but all Einstein’s predictions have been verified since.
Bohr’s theory of the atom
A major contribution to the subject was made by Niels Bohr of Denmark, who applied the quantum hypothesis to atomic spectra in 1913. The spectra of light emitted by gaseous atoms had been studied extensively since the mid-19th century. It was found that radiation from gaseous atoms at low pressure consists of a set of discrete wavelengths. This is quite unlike the radiation from a solid, which is distributed over a continuous range of wavelengths. The set of discrete wavelengths from gaseous atoms is known as a line spectrum, because the radiation (light) emitted consists of a series of sharp lines. The wavelengths of the lines are characteristic of the element and may form extremely complex patterns. The simplest spectra are those of atomic hydrogen and the alkali atoms (e.g., lithium, sodium, and potassium). For hydrogen, the wavelengths λ are given by the empirical formula where m and n are positive integers with n > m and R∞, known as the Rydberg constant, has the value 1.097373157 × 107 per metre. For a given value of m, the lines for varying n form a series. The lines for m = 1, the Lyman series, lie in the ultraviolet part of the spectrum; those for m = 2, the Balmer series, lie in the visible spectrum; and those for m = 3, the Paschen series, lie in the infrared.
Bohr started with a model suggested by the New Zealand-born British physicist Ernest Rutherford. The model was based on the experiments of Hans Geiger and Ernest Marsden, who in 1909 bombarded gold atoms with massive, fast-moving alpha particles; when some of these particles were deflected backward, Rutherford concluded that the atom has a massive, charged nucleus. In Rutherford’s model, the atom resembles a miniature solar system with the nucleus acting as the Sun and the electrons as the circulating planets. Bohr made three assumptions. First, he postulated that, in contrast to classical mechanics, where an infinite number of orbits is possible, an electron can be in only one of a discrete set of orbits, which he termed stationary states. Second, he postulated that the only orbits allowed are those for which the angular momentum of the electron is a whole number n times ℏ (ℏ = h/2π). Third, Bohr assumed that Newton’s laws of motion, so successful in calculating the paths of the planets around the Sun, also applied to electrons orbiting the nucleus. The force on the electron (the analogue of the gravitational force between the Sun and a planet) is the electrostatic attraction between the positively charged nucleus and the negatively charged electron. With these simple assumptions, he showed that the energy of the orbit has the formwhere E0 is a constant that may be expressed by a combination of the known constants e, me, and ℏ. While in a stationary state, the atom does not give off energy as light; however, when an electron makes a transition from a state with energy En to one with lower energy Em, a quantum of energy is radiated with frequency ν, given by the equation Inserting the expression for En into this equation and using the relation λν = c, where c is the speed of light, Bohr derived the formula for the wavelengths of the lines in the hydrogen spectrum, with the correct value of the Rydberg constant.
Bohr’s theory was a brilliant step forward. Its two most important features have survived in present-day quantum mechanics. They are (1) the existence of stationary, nonradiating states and (2) the relationship of radiation frequency to the energy difference between the initial and final states in a transition. Prior to Bohr, physicists had thought that the radiation frequency would be the same as the electron’s frequency of rotation in an orbit.
Scattering of X-rays
Soon scientists were faced with the fact that another form of radiation, X-rays, also exhibits both wave and particle properties. Max von Laue of Germany had shown in 1912 that crystals can be used as three-dimensional diffraction gratings for X-rays; his technique constituted the fundamental evidence for the wavelike nature of X-rays. The atoms of a crystal, which are arranged in a regular lattice, scatter the X-rays. For certain directions of scattering, all the crests of the X-rays coincide. (The scattered X-rays are said to be in phase and to give constructive interference.) For these directions, the scattered X-ray beam is very intense. Clearly, this phenomenon demonstrates wave behaviour. In fact, given the interatomic distances in the crystal and the directions of constructive interference, the wavelength of the waves can be calculated.
In 1922 the American physicist Arthur Holly Compton showed that X-rays scatter from electrons as if they are particles. Compton performed a series of experiments on the scattering of monochromatic, high-energy X-rays by graphite. He found that part of the scattered radiation had the same wavelength λ0 as the incident X-rays but that there was an additional component with a longer wavelength λ. To interpret his results, Compton regarded the X-ray photon as a particle that collides and bounces off an electron in the graphite target as though the photon and the electron were a pair of (dissimilar) billiard balls. Application of the laws of conservation of energy and momentum to the collision leads to a specific relation between the amount of energy transferred to the electron and the angle of scattering. For X-rays scattered through an angle θ, the wavelengths λ and λ0 are related by the equationThe experimental correctness of Compton’s formula is direct evidence for the corpuscular behaviour of radiation.
De Broglie’s wave hypothesis
Faced with evidence that electromagnetic radiation has both particle and wave characteristics, Louis-Victor de Broglie of France suggested a great unifying hypothesis in 1924. De Broglie proposed that matter has wave as well as particle properties. He suggested that material particles can behave as waves and that their wavelength λ is related to the linear momentum p of the particle by λ = h/p.
In 1927 Clinton Davisson and Lester Germer of the United States confirmed de Broglie’s hypothesis for electrons. Using a crystal of nickel, they diffracted a beam of monoenergetic electrons and showed that the wavelength of the waves is related to the momentum of the electrons by the de Broglie equation. Since Davisson and Germer’s investigation, similar experiments have been performed with atoms, molecules, neutrons, protons, and many other particles. All behave like waves with the same wavelength-momentum relationship.
Basic concepts and methods
Bohr’s theory, which assumed that electrons moved in circular orbits, was extended by the German physicist Arnold Sommerfeld and others to include elliptic orbits and other refinements. Attempts were made to apply the theory to more complicated systems than the hydrogen atom. However, the ad hoc mixture of classical and quantum ideas made the theory and calculations increasingly unsatisfactory. Then, in the 12 months started in July 1925, a period of creativity without parallel in the history of physics, there appeared a series of papers by German scientists that set the subject on a firm conceptual foundation. The papers took two approaches: (1) matrix mechanics, proposed by Werner Heisenberg, Max Born, and Pascual Jordan, and (2) wave mechanics, put forward by Erwin Schrödinger. The protagonists were not always polite to each other. Heisenberg found the physical ideas of Schrödinger’s theory “disgusting,” and Schrödinger was “discouraged and repelled” by the lack of visualization in Heisenberg’s method. However, Schrödinger, not allowing his emotions to interfere with his scientific endeavours, showed that, in spite of apparent dissimilarities, the two theories are equivalent mathematically. The present discussion follows Schrödinger’s wave mechanics because it is less abstract and easier to understand than Heisenberg’s matrix mechanics.