Practical applications of transuranium isotopes

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: transuranic element
Key People:
Glenn T. Seaborg

More plutonium-239 has been produced than any other transuranium isotope. Like uranium-235, it is primarily used as a fuel to generate nuclear power and in nuclear weapons.

Three other transuranium isotopes—plutonium-238, americium-241, and californium-252—have demonstrated substantial practical applications. One gram of plutonium-238 produces approximately 0.57 watt of thermal power, primarily from alpha-particle decay, and this property has been used in space exploration to provide energy for small thermoelectric-power units.

Americium-241 has a predominant gamma-ray energy (60 keV) and a long half-life (432.6 years) for decay by the emission of alpha particles. It is particularly useful for measuring and controlling the thickness of a wide range of industrial materials, for the diagnosis of thyroid disorders, and for smoke detectors. When mixed with beryllium, it generates neutrons at the rate of 1.0 × 107 neutrons per second per gram of americium-241. The mixture is designated 241Am-Be, and many such sources are used worldwide in oil-well operations to monitor how much oil a well produces in a given time span, such as a day.

Californium-252 is an intense neutron source: one gram emits 2.3 × 1012 neutrons per second. It has been used to provide neutrons for numerous applications of neutron-activation analysis, including mineral prospecting and the monitoring of oil wells. It is also used in neutron radiography, in airport neutron-activation detectors for nitrogenous materials (i.e., explosives), and for the irradiation of tumours for which gamma-ray treatment is relatively ineffective. Its most important industrial application, however, is as a start-up source (used to calibrate instrumentation) for nuclear reactors.

Glenn T. Seaborg