Related Topics:
aviation

During the jet age, avionics, a coined term meaning “aviation electronics,” has seen a rapid growth in every aspect, including navigation, instrumentation, communication, safety, and landing assistance.

The advent of the cathode-ray oscilloscope and its application to aircraft spurred the avionics revolution, which had begun with relatively primitive radios. While the initial uses of the cathode-ray display were for military purposes (detecting incoming enemy aircraft), it was soon applied to in-flight navigation, controlling aircraft in terminal areas, and landing operations. The ground-controlled approach (GCA), in which a ground observer monitors the course and descent angle of an aircraft via radar, enables pilots to land under extremely adverse weather conditions. GCA was used extensively by the U.S. military during the 1948 Berlin blockade and airlift and was approved for U.S. civil airline use in 1949. Another avionics system, the instrument landing system (ILS), uses onboard instruments to interpret signals sent from ground stations. A rather primitive ILS was introduced in 1929 but became truly useful only after 1945. As radar became more powerful and available in greater quantity, it became useful for monitoring aircraft as they progressed along their routes.

In communications, radios operating in very high frequency (VHF) reappeared after World War II and became standard for civil and commercial aircraft, while military aircraft adopted ultrahigh frequency (UHF). The introduction of satellite communication in the early 1960s, while initially expensive, finally offered the potential to achieve real-time surveillance of every airborne aircraft anywhere in the world. Meanwhile, the use of satellites for navigation leaped forward in the mid-1990s, in part because its adoption was less expensive than satellite communications and in part because of its pinpoint accuracy. Global Positioning System (GPS) satellites can be expected to eventually be used for terminal control and landing approaches.

The cathode-ray display also found its way into the cockpit, where it replaced standard analog information presentations and made far more information instantly available to pilots. When integrated into automatic pilots, these displays make cockpit resource management a key element of flying safety. There were almost-continuous experiments with the cathode-ray tube from the mid-1970s, but it was supplanted by the computer-based electronic display in the 1980s. The first true “glass cockpit” was found in the Boeing 767 (1981). Since that time, electronic displays have progressed throughout aviation and may now be found even in light aircraft. The next generation in cockpit management is the Multifunction Electronic Display Subsystem (MEDS), which allows pilots to call up desired information on a liquid crystal display (LCD). Besides being more easily understood by a computer-literate generation of pilots, MEDS is less expensive to maintain and more easily updated than conventional instrumentation.

In the area of passenger support, the jet age excelled in the ticketing process and in the creation of large terminals, but in the view of many experienced travelers it regressed in the area of onboard comfort. Seating became more restricted, and the rapid retrieval of baggage seemed to remain an unsolvable problem. To some extent, onboard electronics compensated for these inconveniences by providing amenities such as telephones, television, and the Internet. Most travelers, however, would settle for a little more hip and leg room. Safety is one area in which there has been continual progress, with military and commercial aviation having vastly improved their safety records by any measure.

Turbine-powered helicopters

As important as the jet engine was to other sectors of aviation, nowhere was it more eagerly received than in the helicopter industry. The advent of jet engines provided helicopters with more power and flexibility, for they allowed operations at higher altitudes and temperatures. The relative ease with which earlier piston-engine models could be retrofitted also contributed to the proliferation of turbine engines.

The first jet (but not turbine) helicopter was the German Doblhoff WNF 342, which flew in 1943 using three hollow rotors through which a mixture of fuel and air was compressed to burn through nozzles at the blade tips for vertical takeoffs and landings. A conventional piston engine was used for horizontal flight. In 1947 the McDonnell “Little Henry” used a similar principle, using ramjets mounted at each end of the two-blade rotor for power. A Garrett Air Research gas turbine, normally used for auxiliary power units, supplied the motive air. The military was the primary market for early turbine-powered, or turboshaft, helicopters, with the Kaman K-600 and its Avco Lycoming T53-L-1B engine sold as the H-43B to the U.S. Air Force. In a similar way, the French armed services placed mass-production orders for the very successful Sud Est S.E. 313B Alouette II.

Real commercial success did not come to turboshaft helicopters until after Bell’s 1955 experiments with their 47H led to the three-passenger 47J Ranger. However, the helicopter that led the turbine revolution was the Bell Model 204. This led to the Model 205, the foundation of the famous UH-1 Huey and many other Bell designs. It was followed in the commercial field by the Bell Model 206 Jet Ranger, which first flew on Jan. 10, 1966. The Jet Ranger series and the Alouette II established helicopter dynasties for their companies and inspired manufacturers all over the world to substitute turboshaft engines for piston engines in older designs while feverishly creating new designs tailored specifically to the turbine engine. The Russian-born American engineer Igor Sikorsky profited from the adoption of helicopters, branching out with a series of ever more powerful designs. From the seminal VS-300 down through the immortal HH-3E (“Jolly Green Giant”) rescue plane to the UH-60 Black Hawks that proved so important in special forces operations, Sikorsky helicopters remained at the forefront of rotary-wing flight.

The Soviet Union used helicopters extensively for military and civil use and the availability of turbine engines increased this use. With their usual penchant for large-scale vehicles, the Soviet Union developed many powerful helicopters, including the Mil Mi-26, which could carry payloads as great as 20,000 kg (44,000 pounds) and was the largest production helicopter in the world.

The power and the reliability of the turbine engine endowed the helicopter with the capability and flexibility to handle a host of missions, including police work, medical evacuation, forestry, air and sea rescue, agricultural spraying, and construction.

Walter James Boyne
Top Questions

What did the Wright brothers invent?

When was the Wright brothers’ first successful powered, sustained flight?

Where was the Wright brothers’ first successful powered, sustained flight?

Did Neil Armstrong pay homage to the Wright brothers?

Who was Katharine Wright?

Wright brothers, were American inventors and aviation pioneers who achieved the first powered, sustained, and controlled airplane flight (1903). Wilbur Wright (April 16, 1867, near Millville, Indiana, U.S.—May 30, 1912, Dayton, Ohio) and his brother Orville Wright (August 19, 1871, Dayton—January 30, 1948, Dayton) also built and flew the first fully practical airplane (1905).

(Read Orville Wright’s 1929 biography of his brother, Wilbur.)

Early family life

Wilbur and Orville were the sons of Milton Wright, an ordained minister of the Church of the United Brethren in Christ, and Susan Catherine Koerner Wright, whom Milton had met while he was training for the ministry and while Susan was a student at a United Brethren college in Hartsville, Indiana. Two boys, Reuchlin (1861–1920) and Lorin (1862–1939), were born to the couple before Wilbur was born on a farm near Millville. The young family then moved to Dayton, Ohio, so that Milton could take up duties as the editor of a church newspaper. In that city a pair of twins, Otis and Ida, were born and died in 1870. Orville arrived a year later, followed by Katharine (1874–1929).

Elected a bishop of the church in 1877, Milton spent long periods of time away from home visiting the Brethren congregations for which he was responsible. The family moved often: to Cedar Rapids, Iowa, in 1878; to a farm near Richmond, Indiana, in 1881; and back to Dayton in 1884. The Wright children were educated in public schools and grew up, as Orville later explained, in a home where “there was always much encouragement to children to pursue intellectual interests; to investigate whatever aroused curiosity.” In a less-nourishing environment, Orville believed, “our curiosity might have been nipped long before it could have borne fruit.”

These were not tranquil years for Bishop Wright. As the leader of a conservative faction opposed to modernization in the church, he was involved in a 20-year struggle that led to a national schism in 1889 and was followed by multiple lawsuits for possession of church property. Even as these decades of crisis were approaching a conclusion, an entirely new conflict developed, this time within the small schismatic branch that Bishop Wright had led away from the original church. The resulting church disciplinary hearings and civil court cases continued up to the time of the bishop’s retirement in 1905.

Quiz thumbnail, "What Happened on this Very Important Date" quiz. A push pin on a calendar
Britannica Quiz
What Very Big Thing Happened on This Day?

Bishop Wright exercised an extraordinary influence on the lives of his children. Wilbur and Orville, like their father, were independent thinkers with a deep confidence in their own talents, an unshakable faith in the soundness of their judgment, and a determination to persevere in the face of disappointment and adversity. Those qualities, when combined with their unique technical gifts, help to explain the success of the Wright brothers as inventors. At the same time, the bishop’s rigid adherence to principle and disinclination to negotiate disputes may have had some influence on the manner in which the brothers, later in life, conducted the marketing of their invention.

Printers and bicycle makers

Wilbur and Orville were the only members of the Wright family who did not attend college or marry. Wilbur’s plans to enter college came to an end when he was injured in a hockey accident in the winter of 1885–86. He spent the following three years recovering his health, reading extensively in his father’s library, assisting the bishop with his legal and church problems, and caring for his invalid mother, who died of tuberculosis in 1889.

Are you a student?
Get a special academic rate on Britannica Premium.

Following their mother’s death, Orville, who had spent several summers learning the printing trade, persuaded Wilbur to join him in establishing a print shop. In addition to normal printing services, the brothers edited and published two short-lived local newspapers. They also published another newspaper, The Tattler, for Dayton’s African American community, which was edited by poet Paul Laurence Dunbar, a high-school classmate of Orville’s. They developed a local reputation for the quality of the presses that they designed, built, and sold to other printers. These printing presses were one of the first indications of the Wright brothers’ extraordinary technical ability and their unique approach to the solution of problems in mechanical design.

In 1892 the brothers opened a bicycle sales and repair shop, and they began to build bicycles on a small scale in 1896. They developed their own self-oiling bicycle wheel hub and installed a number of light machine tools in the shop. Profits from the print shop and the bicycle operation eventually were to fund the Wright brothers’ aeronautical experiments from 1899 to 1905. In addition, the experience of designing and building lightweight, precision machines of wood, wire, and metal tubing was ideal preparation for the construction of flying machines.

In later years the Wrights dated their fascination with flight to a small helicopter toy that their father had brought home from his travels when the family was living in Iowa. A decade later, they had read accounts of the work of the German glider pioneer Otto Lilienthal. But it was news reports of Lilienthal’s death in a glider crash in August 1896 that marked the beginning of their serious interest in flight. By 1899 the brothers had exhausted the resources of the local library and had written to the Smithsonian Institution for suggestions as to further reading in aeronautics. The following year they wrote to introduce themselves to Octave Chanute, a leading civil engineer and an authority on aviation who would remain a confidant of the brothers during the critical years from 1900 to 1905.