print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Key People:
Shuji Nakamura
Akasaki Isamu
Amano Hiroshi
Related Topics:
technology
material

Thermosetting polymers find only limited application in medicine, but their characteristic properties, which combine high strength and chemical resistance, are useful for some orthopedic and dental devices. Thermosetting polymers such as epoxies and acrylics are chemically inert, and they also have high modulus and tensile properties with negligible elongation (1 to 2 percent). The polymer chains in these materials are highly cross-linked and therefore have severely restricted macromolecular mobility; this limits extension of the polymer chains under an applied load. As a result, thermosets are strong but brittle materials.

Cross-linking inhibits close packing of polymer chains, preventing formation of crystalline regions. Another consequence of extensive cross-linking is that thermosets do not undergo solid-melt transformation on heating, so that they cannot be melted or reprocessed.

Applications of biomaterials

Cardiovascular devices

Biomaterials are used in many blood-contacting devices. These include artificial heart valves, synthetic vascular grafts, ventricular assist devices, drug-release systems, extracorporeal systems, and a wide range of invasive treatment and diagnostic systems. An important issue in the design and selection of materials is the hemodynamic conditions in the vicinity of the device. For example, mechanical heart valve implants are intended for long-term use. Consequently, the hinge points of each valve leaflet and the materials must have excellent wear and fatigue resistance in order to open and close 80 times per minute for many years after implantation. In addition, the open valve must minimize disturbances to blood flow as blood passes from the left ventricle of the heart, through the heart valve, and into the ascending aorta of the arterial vascular system. To this end, the bileaflet valve disks of one type of implant are coated with pyrolytic carbon, which provides a relatively smooth, chemically inert surface. This is an important property, because surface roughness will cause turbulence in the blood flow, which in turn may lead to hemolysis of red cells, provide sites for adventitious bacterial adhesion and subsequent colonization, and, in areas of blood stasis, promote thrombosis and blood coagulation. The carbon-coated holding ring of this implant is covered with Dacron mesh fabric so that the surgeon can sew and fix the device to adjacent cardiac tissues. Furthermore, the porous structure of the Dacron mesh promotes tissue integration, which occurs over a period of weeks after implantation.

While the possibility of thrombosis can be minimized in blood-contacting biomaterials, it cannot be eliminated entirely. For this reason, patients who receive artificial heart valves or other blood-contacting devices also receive anticoagulation therapy. This is needed because all foreign surfaces initiate blood coagulation and platelet adhesion to some extent. Platelets are circulating cellular components of blood, two to four micrometres in size, that attach to foreign surfaces and actively participate in blood coagulation and thrombus formation. Research on new biomaterials for cardiovascular applications is largely devoted to understanding thrombus formation and to developing novel surfaces for biomaterials that will provide improved blood compatibility.

Synthetic vascular graft materials are used to patch injured or diseased areas of arteries, for replacement of whole segments of larger arteries such as the aorta, and for use as sewing cuffs (as with the heart valve mentioned above). Such materials need to be flexible to allow for the difficulties of implantation and to avoid irritating adjacent tissues; also, the internal diameter of the graft should remain constant under a wide range of flexing and bending conditions, and the modulus or compliance of the vessel should be similar to that of the natural vessel. These aims are largely achieved by crimped woven Dacron and expanded polytetrafluoroethylene (ePTFE). Crimping of Dacron in processing results in a porous vascular graft that may be bent 180° or twisted without collapsing the internal diameter.

A biomaterial used for blood vessel replacement will be in contact not only with blood but also with adjacent soft tissues. Experience with different materials has shown that tissue growth into the interstices of the biomaterials aids healing and integration of the material with host tissue after implantation. In order for the tissue, which consists mostly of collagen, to grow in the graft, the vascular graft must have an open structure with pores at least 10 micrometres in diameter. These pores allow new blood capillaries that develop during healing to grow into the graft, and the blood then provides oxygen and other nutrients for fibroblasts and other cells to survive in the biomaterial matrix. Fibroblasts synthesize the structural protein tropocollagen, which is needed in the development of new fibrous tissue as part of the healing response to a surgical wound.

Occasionally, excessive tissue growth may be observed at the anastomosis, which is where the graft is sewn to the native artery. This is referred to as internal hyperplasia and is thought to result from differences in compliance between the graft and the host vessels. In addition, in order to optimize compatibility of the biomaterial with the blood, the synthetic graft eventually should be coated with a confluent layer of host endothelial cells, but this does not occur with current materials. Therefore, most proposed modifications to existing graft materials involve potential improvements in blood compatibility.

Artificial heart valves and vascular grafts, while not ideal, have been used successfully and have saved many thousands of lives. However, the risk of thrombosis has limited the success of existing cardiovascular devices and has restricted potential application of the biomaterials to other devices. For example, there is an urgent clinical need for blood-compatible, synthetic vascular grafts of small diameter in peripheral vascular surgery—e.g., in the legs—but this is currently impracticable with existing biomaterials because of the high risk of thrombotic occlusion. Similarly, progress with implantable miniature sensors, designed to measure a wide range of blood conditions continuously, has been impeded because of problems directly attributable to the failure of existing biomaterials. With such biocompatibility problems resolved, biomedical sensors would provide a very important contribution to medical diagnosis and monitoring. Considerable advances have been made in the ability to manipulate molecular architecture at the surfaces of materials by using chemisorbed or physisorbed monolayer films. Such progress in surface modification, combined with the development of nanoscale probes that permit examination at the molecular and submolecular level, provide a strong basis for optimism in the development of specialty biomaterials with improved blood compatibility.