print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: animal feed
Also called:
animal feed

Minerals essential for animal life include common salt (sodium chloride), calcium, phosphorus, sulfur, potassium, magnesium, manganese, iron, copper, cobalt, iodine, zinc, molybdenum, and selenium. The last six of these can be toxic to animals if excessive amounts are eaten.

All farm animals generally need more common salt than is contained in their feeds, and they are supplied with it regularly. Of the other essential minerals, phosphorus and calcium are most apt to be lacking, because they are heavily drawn upon to produce bones, milk, and eggshells. Good sources of calcium and phosphorus are bonemeal, dicalcium phosphate, and defluorinated phosphates. Eggshells are nearly pure calcium carbonate. Calcium may readily be supplied by ground limestone, ground seashells, or marl, which are all high in calcium.

Small amounts of iodine are needed by animals for the formation of thyroxine, a compound containing iodine, secreted by the thyroid gland. A serious deficiency of iodine may cause goitre, a disease in which the thyroid gland enlarges greatly. In certain regions, goitre has caused heavy losses of newborn pigs, lambs, kids, calves, and foals. Iodine deficiencies can be prevented by supplying iodized salt to the mother before the young are born. Almost all commercial sources of salt for animals contain iodine as a routine additive.

In some areas, soil and forage are deficient in copper and cobalt, which are needed along with iron for the formation of hemoglobin, the oxygen-carrying pigment of the red blood cells. In these areas, farm animals may suffer from anemia unless the deficiency is corrected by means of a suitable mineral supplement. Ruminants are usually fed cobalt in the diet so they can then synthesize vitamin B12. Monogastric animals, such as pigs, require a direct source of vitamin B12 in their diet.

Iron, used in hemoglobin formation, is amply supplied in most animal feeds, except milk. The only practical problem with iron deficiency occurs in young suckling pigs before they start to consume other feeds in addition to milk. They require an iron injection or access to fresh soil to meet their iron needs.

Manganese is essential for animals, and the usual diets for all farm animals supply sufficient quantities. A lack of manganese may cause the nutritional disease of chicks and young turkeys called slipped tendon (perosis) and also may cause failure of eggs to hatch. Normal diets for swine are often deficient in zinc, especially in the presence of excess calcium. Fortifying feed by adding 100 parts per million of zinc, as zinc sulfate or zinc carbonate, prevents zinc deficiency symptoms, which include retarded growth rate and severe scaliness and cracking of the skin (parakeratosis). While trace amounts of selenium are necessary for normal health, excessive amounts, which can be found in forages and grains in some regions, are toxic and may cause death. To furnish both calcium and phosphorus, grazing livestock may be allowed free access to such a mixture as 60 percent dicalcium phosphate and 40 percent common salt. Trace mineralized salt is used when copper or cobalt may be deficient. Livestock usually are given access to common salt separately, so they will not be forced to eat more of the other minerals than they require to get the amount of salt they need. Swine diets usually contain prescribed levels of calcium, phosphorus, salt, and essential trace minerals that may be deficient in the grains they are fed.

Vitamins

Known vitamins include the fat-soluble vitamins A, D, E, and K, and the water-soluble B group of thiamin, riboflavin, niacin, pantothenic acid, choline, biotin, folic acid, and vitamins B6 and B12 and vitamin C.

Vitamin A, the one most apt to be lacking in livestock feeds, is required for growth, reproduction, milk production, and the maintenance of normal resistance to respiratory infections. All green-growing crops are rich in carotene, which animals can convert into vitamin A. Vitamin A supplement is added to animal diets to ensure a supply when livestock are not fed green forages and are not on good pasture.

Vitamin D enables animals to use calcium and phosphorus; a deficiency causes rickets in young growing animals. The ultraviolet rays of sunlight produce vitamin D from the provitamin in the skin. Field curing of hay develops vitamin D through the action of the sunlight on ergosterol in the hay crops. Certain fish oils are very rich in vitamin D. Livestock that are outdoors in the sunlight much of the time have a plentiful supply of vitamin D. Under winter conditions in cold regions, cattle, sheep, and horses ordinarily get ample amounts from the hay they are fed; pigs, poultry, and laboratory animals that are raised indoors will be deficient unless a supplement is added.

The vitamin B group is not important in the feeding of cattle, sheep, and other ruminants, because the bacteria in their rumen synthesize these vitamins. Very young calves, however, and poultry, swine, and other monogastric animals require the B vitamins in their diets. Of these, riboflavin, niacin, pantothenic acid, and vitamin B12 are most likely to be deficient in ordinary feeds; special supplements are needed by pigs, poultry, and laboratory animals. Choline may also be deficient in poultry feeds.

Vitamin E is necessary for normal hatching of eggs. It plays a role along with selenium in preventing muscle stiffness and paralysis (dystrophy) in lambs, calves, and chicks under certain conditions. Vitamin C, which prevents scurvy in humans and guinea pigs, can be synthesized in the bodies of most other animals and need not be supplied in their food. Vitamin K is synthesized by bacteria in the intestinal tract and can be absorbed, and, if livestock can ingest feces, a dietary supply is usually not important. Today many animals are raised without fecal contact, though, so vitamin K is often added to their diets as a safety factor.