Trends and prospects

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

For logisticians the fundamental dilemma posed by the quantum leap in weapons technology after World War II was the absence of any comparable development in logistics. The electronic computer had, indeed, a dramatic impact on logistic planning and administration, as well as on military administration in general. The computer enabled planners to visualize problems concretely, often in quantitative terms; it accelerated the transmission of demand and the administrative response to it; and it enabled the military services for the first time to control their inventories. But the computer could not touch the ancient problem, compounded by the new weaponry, of actually providing and moving supplies to their users.

Conversely, nuclear weapons threatened to sweep away every vestige of the logistic system of the industrial era. None of the elaborate apparatuses of rear-area administration, lines of communication, or even sources of supply seemed likely to survive the nuclear firepower that could be brought to bear against it. The problem was studied and restudied, and a great deal of hopeful doctrine was developed for logistic operations in a nuclear war. It revolved about such concepts as dispersion, mobility, small targets, duplication, multiplicity, austerity, concealment, and automaticity, yet all of it was little more than a planner’s dream, and a fading dream at that. At best it promised to reduce somewhat the inherent vulnerability of the surface-bound installations and transport on which military forces for the foreseeable future were likely to depend. Dispersion and duplication were enemies of economy and efficiency. The net effect could only be to increase the costs of logistic support and diminish the yield of delivered supplies and services.

In any case, nuclear war seemed the least likely of prospects. The most likely appeared to be a continuation of the confused patterns of limited conventional war and quasi-war that had filled the decades since the end of World War II. Under these conditions the central problems of logistics would be the historic ones of weight and bulk, which inhibited mobility and range of movement and were the primary causes of vulnerability to the new firepower. The technologies of these decades had accelerated the basic logistic trends of the industrial era: increasing complexity and cost in military hardware, increasing overall weight and volume of material (despite a reverse trend toward reduced numbers in some major items, such as aircraft), and, above all, an enormous increase in expenditures of ammunition and fuel. Logisticians in the postwar decades had to face the probability that in another large-scale conventional conflict between advanced powers the new vehicles would consume about half again as much fuel and the new weapons would expend more than four times as much ammunition as had been consumed and expended in World War II.

Some of the new tools of logistics were highly effective in specialized environments, notably the growing family of helicopters used in conjunction with conventional and short-takeoff-and-landing air transports, which permitted a mobility and a range of movement over difficult terrain far beyond the capabilities of surface transport. Whether an airmobile logistic system could survive the firepower likely to be encountered in a conflict with an adversary disputing command of the air was a question to which experience had not yet given an answer. In any case, the system purchased its mobility and range at a fuel cost several times higher than that involved in surface transport.

How well the “sophisticated” systems, with their growing burden of weight and bulk, would function under a threat to their previously immune supply lines was perhaps the most serious challenge facing modern logisticians. Nuclear propulsion offered a theoretical solution, but there seemed little hope for its early application to large sectors of military movement. A nuclear-powered sea transport service was a reasonable prospect, though not an early one, and it would not suffice for a major overseas war. More fundamentally, fuel consumption on the sea lanes was not the crux of the problem, and nuclear propulsion offered no solution to the vulnerability of surface vessels to air and submarine attack. The massive fuel consumers were aircraft and ground vehicles, and serious technical obstacles barred the application of nuclear energy to their power plants.

The reckoning, if there was to be one, might be long postponed. Given the existing distribution and equilibriums of power among the advanced nations, on the one hand, and the high cost and slow diffusion of sophisticated military technology to the less-developed two-thirds of the world, on the other, limited warfare seemed likely for a long time to come to remain at relatively low technical levels. Meanwhile, sophisticated logistic systems were becoming more entangled in their own complexity and absorbed in the endless pursuit of efficient management and in the struggle to control the waste and friction involved in delivering the tools of war to their users.

Richard M. Leighton