theorem, in mathematics and logic, a proposition or statement that is demonstrated. In geometry, a proposition is commonly considered as a problem (a construction to be effected) or a theorem (a statement to be proved). The statement “If two lines intersect, each pair of vertical angles is equal,” for example, is a theorem. The so-called fundamental theorem of algebra asserts that every (complex) polynomial equation in one variable has at least one complex root or solution. The Greeks also recognized a proposition lying between a theorem and a problem, the porism, directed to producing or finding what is proposed.

proof, in logic, an argument that establishes the validity of a proposition. Although proofs may be based on inductive logic, in general the term proof connotes a rigorous deduction. In formal axiomatic systems of logic and mathematics, a proof is a finite sequence of well-formed formulas (generated in accordance with accepted formation rules) in which: (1) each formula is either an axiom or is derived from some previous formula or formulas by a valid inference; and (2) the last formula is that which is to be proved. For proof by cases, see dilemma.