vegetable farming, growing of vegetable crops, primarily for use as human food.

The term vegetable in its broadest sense refers to any kind of plant life or plant product; in the narrower sense, as used in this article, however, it refers to the fresh, edible portion of a herbaceous plant consumed in either raw or cooked form. The edible portion may be a root, such as rutabaga, beet, carrot, and sweet potato; a tuber or storage stem, such as potato and taro; the stem, as in asparagus and kohlrabi; a bud, such as brussels sprouts; a bulb, such as onion and garlic; a petiole or leafstalk, such as celery and rhubarb; a leaf, such as cabbage, lettuce, parsley, spinach, and chive; an immature flower, such as cauliflower, broccoli, and artichoke; a seed, such as pea and lima bean; the immature fruit, such as eggplant, cucumber, and sweet corn (maize); or the mature fruit, such as tomato and pepper.

The popular distinction between vegetable and fruit is difficult to uphold. In general, those plants or plant parts that are usually consumed with the main course of a meal are popularly regarded as vegetables, while those mainly used as desserts are considered fruits. This distinction is applied in this article. Thus, cucumber and tomato, botanically fruits, since they are the portion of the plant containing seeds, are commonly regarded as vegetables.

This article treats the principles and practices of vegetable farming. For a discussion of the processing of vegetables, see the article food preservation. For information on nutritive value, see nutrition: Human nutrition and diet.

Types of production

Vegetable production operations range from small patches of crops, producing a few vegetables for family use or marketing, to the great, highly organized and mechanized farms common in the most technologically advanced countries.

In technologically developed countries the three main types of vegetable farming are based on production of vegetables for the fresh market, for canning, freezing, dehydration, and pickling, and to obtain seeds for planting.

Production for the fresh market

This type of vegetable farming is normally divided into home gardening, market gardening, truck farming, and vegetable forcing.

Are you a student?
Get a special academic rate on Britannica Premium.

Home gardening provides vegetables exclusively for family use. About one-fourth of an acre (one-tenth of a hectare) of land is required to supply a family of six. The most suitable vegetables are those producing a large yield per unit of area. Bean, cabbage, carrot, leek, lettuce, onion, parsley, pea, pepper, radish, spinach, and tomato are desirable home garden crops.

Market gardening produces assorted vegetables for a local market. The development of good roads and of motor trucks has rapidly extended available markets; the market gardener, no longer forced to confine his operations to his local market, often is able to specialize in the production of a few, rather than an assortment, of vegetables; a transformation that provides the basis for a distinction between market and truck gardening in the mid-20th century. Truck gardens produce specific vegetables in relatively large quantities for distant markets.

In the method known as forcing, vegetables are produced out of their normal season of outdoor production under forcing structures that admit light and induce favourable environmental conditions for plant growth. Greenhouses, cold frames, and hotbeds are common structures used. Hydroponics, sometimes called soilless culture, allows the grower to practice automatic watering and fertilizing, thus reducing the cost of labour. To successfully compete with other fresh market producers, greenhouse vegetable growers must either produce crops when the outdoor supply is limited or produce quality products commanding premium prices.

Production for processing

Processed vegetables include canned, frozen, dehydrated, and pickled products. The cost of production per unit area of land and per ton is usually less for processing crops than for the same crops grown for market because raw material appearance is not a major quality factor in processing. This difference allows lower land value, less hand labour, and lower handling cost. Although many kinds of vegetables can be processed, there are marked varietal differences within each species in adaptability to a given method.

Specifications for vegetables for canning and freezing usually include small size, high quality, and uniformity. For many kinds of vegetables, a series of varieties having different dates of maturity is required to ensure a constant supply of raw material, thus enabling the factory to operate with an even flow of input over a long period. Acceptable processed vegetables should have a taste, odour, and appearance comparable with the fresh product, retain nutritive values, and have good storage stability.

Vegetables raised for seed production

This type of vegetable farming requires special skills and techniques. The crop is not ready for harvest when the edible portion of the plant reaches the stage of maturity; it must be carried through further stages of growth. Production under isolated conditions ensures the purity of seed yield. Special techniques are applied during the stage of flowering and seed development and also in harvesting and threshing the seeds.

Production factors and techniques

Profitable vegetable farming requires attention to all production operations, including insect, disease, and weed control and efficient marketing. The kind of vegetable grown is mainly determined by consumer demands, which can be defined in terms of variety, size, tenderness, flavour, freshness, and type of pack. Effective management involves the adoption of techniques resulting in a steady flow of the desired amount of produce over the whole of the natural growing season of the crop. Many vegetables can be grown throughout the year in some climates, although yield per acre for a given kind of vegetable varies according to the growing season and region where the crop is produced.

Britannica Chatbot logo

Britannica Chatbot

Chatbot answers are created from Britannica articles using AI. This is a beta feature. AI answers may contain errors. Please verify important information using Britannica articles. About Britannica AI.

Climate

Climate involves the temperature, moisture, daylight, and wind conditions of a specific region. Climatic factors strongly affect all stages and processes of plant growth.

Temperature

Temperature requirements are based on the minimum, optimum, and maximum temperatures during both day and night throughout the period of plant growth. Requirements vary according to the type and variety of the specific crop. Based on their optimum temperature ranges, vegetables may be classed as cool-season or warm-season types. Cool-season vegetables thrive in areas where the mean daily temperature does not rise above 70° F (21° C). This group includes the artichoke, beet, broccoli, brussels sprouts, cabbage, carrot, cauliflower, celery, garlic, leek, lettuce, onion, parsley, pea, potato, radish, spinach, and turnip. Warm-season vegetables, requiring mean daily temperature of 70° F or above, are intolerant of frost. These include the bean, cucumber, eggplant, lima bean, okra, muskmelon, pepper, squash, sweet corn (maize), sweet potato, tomato, and watermelon.

Premature seeding, or bolting, is an undesirable condition that is sometimes seen in fields of cabbage, celery, lettuce, onion, and spinach. The condition occurs when the plant goes into the seeding stage before the edible portion reaches a marketable size. Bolting is attributed to either extremely low or high temperature conditions in combination with inherited traits. Specific vegetable strains or varieties may exhibit significant differences in their tendency to bolt.

Young cabbage or onion plants of relatively large size may bolt upon exposure to low temperatures near 50° to 55° F (10° to 13° C). At high temperatures of 70° to 80° F (21° to 27° C) lettuce plants do not form heads and will show premature seeding. The fruit sets of tomatoes are adversely affected by relatively low and relatively high temperatures. Tomato breeders, however, have developed several new varieties, some setting fruits at a temperature as low as 40° F (4° C) and others at a temperature as high as 90° F (32° C).

Moisture

The amount and annual distribution of rainfall in a region, especially during certain periods of development, affects local crops. Irrigation may be required to compensate for insufficient rainfall. For optimum growth and development, plants require soil that supplies water as well as nutrients dissolved in water. Root growth determines the extent of a plant’s ability to absorb water and nutrients, and in dry soil root growth is greatly retarded. Extremely wet soil also retards root growth by restricting aeration. Atmospheric humidity, the moisture content of the air, also contributes moisture. Certain seacoast areas characterized by high humidity are considered especially adapted to the production of such crops as the artichoke and lima bean. High humidity, however, also creates conditions favourable for the development of certain plant diseases.

Daylight

Light is the source of energy for plants. The response of plants to light is dependent upon light intensity, quality, and daily duration, or photoperiod. The seasonal variation in day length affects the growth and flowering of certain vegetable crops. Continuation of vegetative growth, rather than early flower formation, is desirable in such crops as spinach and lettuce. When planted very late in the spring, these crops tend to produce flowers and seeds during the long days of summer before they attain sufficient vegetative growth to produce maximum yields. The minimum photoperiod required for formation of bulbs in garlic and onion plants differs among varieties, and local day length is a determining factor in the selection of varieties.

Each of the climatic factors affects plant growth, and can be a limiting factor in plant development. Unless each factor is of optimum quantity or quality, plants do not achieve maximum growth. In addition to the importance of individual climatic factors, the interrelationship of all environmental factors affects growth.

Certain combinations may exert specific effects. Lettuce usually forms a seedstalk during the long days of summer, but the appearance of flowers may be delayed, or even prevented, by relatively low temperature. An unfavourable temperature combined with unfavourable moisture conditions may cause the dropping of the buds, flowers, and small fruits of the pepper, reducing the crop yield. Desirable areas for muskmelon production are characterized by low humidity combined with high temperature. In the production of seeds of many kinds of vegetables, absence of rain, or relatively light rainfall, and low humidity during ripening, harvesting, and curing of the seeds are very important.

Site

The choice of a site involves such factors as soil and climatic region. In addition, with the continued trend toward specialization and mechanization, relatively large areas are required for commercial production, and adequate water supply and transportation facilities are essential. Topography—that is, the surface of the soil and its relation to other areas—influences efficiency of operation. In modern mechanized farming, large, relatively level fields allow for lower operating costs. Power equipment may be used to modify topography, but the cost of such land renovation may be prohibitive. The amount of slope influences the type of culture possible. Fields with a moderate slope should be contoured, a process that may involve added expense for the building of terraces and diversion ditches. The direction of a slope may influence the maturation time of a crop or may result in drought, winter injury, or wind damage. A level site is generally most desirable, although a slight slope may assist drainage. Exposed sites are not suitable for vegetable farming because of the risk of damage to plants by strong winds.

The soil stores mineral nutrients and water used by plants, as well as housing their roots. There are two general kinds of soils—mineral and the organic type called muck or peat. Mineral soils include sandy, loamy, and clayey types. Sandy and loamy soils are usually preferred for vegetable production. Soil reaction and degree of fertility can be determined by chemical analysis. The reaction of the soil determines to a great extent the availability of most plant nutrients. The degree of acid, alkaline, or neutral reaction of a soil is expressed as the pH, with a pH of 7 being neutral, points below 7 being acid, and those above 7 being alkaline. The optimum pH range for plant growth varies from one crop to another. A soil can be made more acid, or less alkaline, by applying an acid-producing chemical fertilizer such as ammonium sulfate.

The inherent fertility of soils affects production quantity, and a sound fertility program is required to maintain productivity. The ability of a soil to support plant life and produce abundant harvests is dependent on the immediately available nutrients in the soil and on the rate of release of additional nutrients that are present but not available to plants. The rate of release of these additional nutrients is affected by such factors as microbial action, soil temperature, soil moisture, and aeration. Depletion of soil fertility may occur as a result of crop removal, erosion, leaching, and volatilization, or evaporation, of nutrients.