Teeth
- Related Topics:
- oreodont
- ruminant
- tylopod
- Archaeomeryx
- Suiformes
There is a complete set of teeth in early artiodactyls and in modern pigs of the genus Sus, consisting on each side of three upper and lower incisors, an upper and lower canine, four upper and lower premolars, and three upper and lower molars. There has been a tendency toward reduction of the front teeth and development of a gap (diastema) between them and the back teeth. There has been very little tendency for the premolars to molarize, and the first premolar often disappears. Early forms had five-cusped upper molars, but the fifth cusp (protoconule) disappeared early.
Members of the suborder Suiformes have the full complement of incisors and canines, except for peccaries, which lack the lateral pair of upper incisors. Hippopotamuses have continuously growing incisors and canines, the lower canines being very large.
The canines of pigs grow continuously. In this group the canines are weapons for offense and defense, the sharp cutting edges of the lower canines being maintained by wear against the uppers. Young camels retain the full complement of front teeth, with three incisors and one canine in the upper and lower jaws; the upper incisors are extremely small. In the upper jaw of the adult only the rear incisor and canine are present. The vicuña has continuously growing lower incisors.
The molars of pigs are low crowned (except those of the warthog) and have many cusps; those of peccaries are more simple. Peccaries have one less premolar than pigs; camels also have reduced premolars. Chevrotains have rather flattened lower premolars but have incipiently selenodont molars; i.e., in which the cusps are drawn out into longitudinal crescents. Premolars of ruminants are wider, and the molars definitely selenodont. In many bovids and the pronghorn, but not in giraffes or deer, the molars are markedly high crowned.
Limb adaptations for fast running
Adaptations for fast running reach an extreme in advanced artiodactyls living in open country. In addition to the increased rotation of the astragalus, which increases the propulsive thrust at the ankle and enables a quicker recovery at the end of a stride before starting the next one, there are other features that help to increase the speed of striding. The legs of most camels and ruminants have lengthened, especially in the lower parts; the number of toes, or digits, in the feet is reduced from the original mammalian five, and ruminants walk on the tips of their toes. The muscles are inserted high on the legs; only tendons pass lower, so that a large mass is not concentrated near the tip of the limb, where its inertia would restrict speed of movement. Muscle contraction is fast. The movement of each leg is almost limited to a fore-and-aft plane. Emphasis on the fore-and-aft articulations between the limb bones is especially pronounced in many bovids, the alternating bones in the wrist (carpus) and ankle (tarsus) taking the strain of impact on uneven ground.
Pigs have four toes on each foot, but only two of them touch the ground. Their limbs are short and not very advanced. Peccaries have lost the outer accessory hind hoof in the back leg. All four toes of each foot of hippopotamuses touch the ground, and the terminal phalanges have nail-like hoofs. The toe bones of camels are completely enclosed in hardened, horny hoofs, and lateral toes spread across the broad pad which aids in walking on desert sands. Chevrotains have four hoofed toes on each foot; deer often retain the first and second phalanges (sections) of their lateral toes; but all bovids have lost the bones of their lateral toes.
The fibula bone in the back leg and the ulna in the front leg have been reduced in different artiodactyl lineages. Both are still complete in pigs and hippopotamuses, although the fibula is slender. In most other artiodactyls, the lower end of the fibula has survived, and the upper end is occasionally found, but always less noticeably. In camels the ulna has fused with the radius. Pigs, hippopotamuses, and camels have separate navicular and cuboid bones in the ankle, and magnum and trapezoid bones in the wrist; other artiodactyls have a fused naviculo-cuboid and magnum-trapezoid. In chevrotains and some deer, the adjacent ectocuneiform is sometimes joined with the naviculo-cuboid.
The artiodactyl method of limb support through the third and fourth toes, with the attendant lengthening of lower limb bones, has frequently led to a fusion of the two principal metacarpal and metatarsal (midfoot) bones in the forelegs and hindlegs, respectively, forming cannon bones. The nearest approach to a cannon bone in the living Suiformes is the proximal fusion (i.e., at the upper ends) of the two central metatarsals in peccaries. Camels have front and rear cannon bones, but the fusion does not extend right to the bottom, the lower articular surfaces being less pulley-like than in ruminants. There is a hind cannon bone in all chevrotains and, in addition, a front one in Asiatic species (Tragulus). All other living artiodactyls have front and rear cannon bones. Lateral metatarsals and metacarpals survive in chevrotains; splints of lateral metacarpals often survive in bovids; and either upper or lower splints of metacarpals in deer.
Modifications of the skin
Pigs are covered with rather sparse coarse hairs and peccaries with a denser coat of coarse hairs. Except for those of the warthog and the babirusa (Babyrousa babirussa), piglets have longitudinal stripes or flecks. Hippopotamuses are naked. Tragulids have light-coloured flecks and stripes in their fur. The coats of camelids and deer are much thicker in species living toward the polar regions, at great heights, or in deserts, but are not noted for striking colours or patterns. Many young deer and the adults of a few species have pale flecks and stripes, and some South American deer have reddish fur. Antelopes have a wider range of coat colours, and some are strikingly marked—e.g., the oryxes, bontebok, and blesbok of southern Africa.