The tetrapods

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://www.britannica.com/animal/vertebrate
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: Craniata, Vertebrata

The tetrapods live primarily on land and are rather similar in habit. Members include the amphibians, reptiles, birds, and mammals. Amphibians are widespread in the warmer parts of the continents, being absent only in the far north and in the Antarctic. Three orders are recognized: Candata (the salamanders), the frogs and toads (Anura, or Salientia), and the Apoda or Gymnophiona (caecilians). Modification takes many forms, from the moist glandular skin (some scale remnants persist in apodans) to the loss of many of the bones of the skull. Like their ancestors, amphibians are cold-blooded and tend to be aquatic or limited to moist surroundings. Salamanders are seemingly the least modified in body form. They do not actively pursue prey and at best are only marginal swimmers. In swimming or crawling, the salamander’s body and tail undulate. Frogs and toads hop using hind-limb propulsion and the forelimbs as body props. This dominance of the hind limb in locomotion is best seen in swimming when the forelimbs are drawn back against the body. In contrast to the salamanders and frogs, the burrowing, wormlike apodans are without limbs.

Amphibians usually trap food using a tongue that can be shot out of the mouth, or they use the mouth itself to grasp and ingest food. There is great variation in foods; only the larvae of frogs and toads appear to be plant feeders, a specialization that is reflected in the highly modified jaws and guts of the tadpoles.

Amphibians have retained a simple egg cell with a gelatinous cover. The eggs are laid in ponds, streams, or even in damp places high in trees, usually in great numbers. Fertilized eggs develop into free-swimming larvae, which then metamorphose to adults, but in highly specialized forms.

The class Reptilia retains many of the structural characteristics of the ancestral amphibian. While most reptiles are carnivorous, feeding on other organisms, a few are herbivorous (e.g., tortoises). As cold-blooded animals, reptiles tend to be limited to temperate and tropical areas, but, where found, they are relatively common, although not as large or conspicuous as birds or mammals. Most reptiles are terrestrial, but a few are aquatic. As basic tetrapods, reptiles move about by creeping or swimming in a fashion similar to amphibians. Some reptiles, however, can lift the body from the ground and run rapidly either in a quadrupedal or bipedal fashion. Reptiles lay relatively large, shelled eggs. In a few instances, the eggs and young are cared for by the female; in others, the young are born alive (ovovivipary).

Birds are warm-blooded, and, although most are capable of flight, others are sedentary and some are flightless. Like their relatives the reptiles, birds lay shelled eggs that differ largely in the amount of calcification (hardening) of the shell. The young are usually cared for in a nest until they are capable of flight and self-feeding, but some birds hatch in a well-developed state that allows them to begin feeding immediately or even take flight. The megapods lay their eggs in mounds of rotting vegetation, which supplies the heat for incubation. (Nesting activities similar to those of some birds are seen in the crocodilians.)

The mammals range in size from tiny shrews or small bats weighing only a few grams to the largest known animals, the whales. Most mammals are terrestrial, feeding on both animal and vegetable matter, but a few are partially aquatic or entirely so, as in the case of the whales or porpoises. Mammals move about in a great variety of ways: burrowing, bipedal or tetrapedal running, flying, or swimming. Reproduction in mammals is usually viviparous, the young developing in the uterus, where nutritive materials are made available through an allantoic placenta or, in a few cases, a yolk sac. The fertilized egg develops directly into the adult. The monotremes (platypus and echidna) differ from other mammals in that they lay eggs which hatch, and the relatively undeveloped young are carried in a pouch or kept in a nest; the growing young lap up a milk nutrient fluid exuded from the belly of the mother.

Form and function

External features

The evolution of the notochord, dorsal nerve tube, and pharyngeal slits in chordate structure suggests improved swimming capability and probably greater ability to capture prey. Specialization in the vertebrate for the active capture of larger prey is evident both in the structure of the mouth and in the relatively simple structure of the pharynx, with its strong gill development. Specialization for feeding is again seen in the two basic groups of vertebrates, the agnathans and gnathostomes. Swimming adaptations are also numerous and involve variations both in body form and in medial fins and the two pairs of lateral fins.

Internal features

The skeletal system

Support and protection are provided by the exoskeletal and endoskeletal divisions of the skeletal system. The exoskeleton, when present, is basically protective but functions in tooth support in the mouth region. The endoskeleton protects the brain and spinal cord and assists primarily with locomotion in the trunk and tail regions. The endoskeleton begins as cartilage and may remain so or may develop into bone. The cartilaginous endoskeleton, found in the shark or chimaerid, is usually calcified so as to be stiffer and stronger. Bone is distinctive but highly variable; some types of bone contain cells, others do not, or the bone may be laminar, spongy, or arranged in sheathing layers around blood channels.

Tissues and muscles

Tissue development in the vertebrate is unique in its complexity; tissues in the strict sense (defined as a mass or sheet of similar cells with a similar function), however, do not exist. The simplest situation is seen in the epidermis, but even here there is a layered system in which different cell types provide different functions (such as protection and secretion). The stratified epithelium of the vertebrate is highly characteristic of that group (a similar one is seen in only one invertebrate group, the class Chaetognatha).

Other tissues of the vertebrate are more complex than the epithelium. For example, skeletal muscle consists not only of striated muscle fibres but also of connective tissue, which binds it together and attaches it by way of tendons. This contractible tissue includes nerves and blood vessels and their contained blood. Skeletal muscles thus appear as simple organs, just as do the smooth muscles in the wall of the gut or the iris muscles of the eye. Such unique histological complexity runs through the entire body of the vertebrate.