Chandrasekhar limit

astronomy
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Key People:
Subrahmanyan Chandrasekhar
Related Topics:
white dwarf star

Chandrasekhar limit, in astrophysics, maximum mass theoretically possible for a stable white dwarf star.

This limiting value was named for the Indian-born astrophysicist Subrahmanyan Chandrasekhar, who formulated it in 1930. Using Albert Einstein’s special theory of relativity and the principles of quantum physics, Chandrasekhar showed that it is impossible for a white dwarf star, which is supported solely by a degenerate gas of electrons, to be stable if its mass is greater than 1.44 times the mass of the Sun. If such a star does not completely exhaust its thermonuclear fuel, then this limiting mass may be slightly larger.

All direct mass determinations of actual white dwarf stars have resulted in masses less than the Chandrasekhar limit. A star that ends its nuclear-burning lifetime with a mass greater than the Chandrasekhar limit must become either a neutron star or a black hole.

1 July 2002: The Solar and Heliospheric Observatory (SOHO) satellite reveals a massive solar eruption more than 30 times the Earth's diameter. The eruption formed when a loop of a magnetic field over the surface of the Sun trapped hot gas.
Britannica Quiz
Brightest Star in the Solar System