Table of Contents
References & Edit History Related Topics
print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

News

Precipitation is one of the three main processes (evaporation, condensation, and precipitation) that constitute the hydrologic cycle, the continual exchange of water between the atmosphere and Earth’s surface. Water evaporates from ocean, land, and freshwater surfaces, is carried aloft as vapour by the air currents, condenses to form clouds, and ultimately is returned to Earth’s surface as precipitation. The average global stock of water vapour in the atmosphere is equivalent to a layer of water 2.5 cm (1 inch) deep covering the whole Earth. Because Earth’s average annual rainfall is about 100 cm (39 inches), the average time that the water spends in the atmosphere, between its evaporation from the surface and its return as precipitation, is about 1/40 of a year, or about nine days. Of the water vapour that is carried at all heights across a given region by the winds, only a small percentage is converted into precipitation and reaches the ground in that area. In deep and extensive cloud systems, the conversion is more efficient, but even in thunderclouds the quantities of rain and hail released amount to only some 10 percent of the total moisture entering the storm.

In the measurement of precipitation, it is necessary to distinguish between the amount—defined as the depth of precipitation (calculated as though it were all rain) that has fallen at a given point during a specified interval of time—and the rate or intensity, which specifies the depth of water that has fallen at a point during a particular interval of time. Persistent moderate rain, for example, might fall at an average rate of 5 mm per hour (0.2 inch per hour) and thus produce 120 mm (4.7 inches) of rain in 24 hours. A thunderstorm might produce this total quantity of rain in 20 minutes, but at its peak intensity the rate of rainfall might become much greater—perhaps 120 mm per hour (4.7 inches per hour), or 2mm (0.08 inch) per minute—for a minute or two.

The amount of precipitation falling during a fixed period is measured regularly at many thousands of places on Earth’s surface by rather simple rain gauges. Measurement of precipitation intensity requires a recording rain gauge, in which water falling into a collector of known surface area is continuously recorded on a moving chart or a magnetic tape. Investigations are being carried out on the feasibility of obtaining continuous measurements of rainfall over large catchment areas by means of radar.

Apart from the trifling contributions made by dew, frost, and rime, as well as desalination plants, the sole source of fresh water for sustaining rivers, lakes, and all life on Earth is provided by precipitation from clouds. Precipitation is therefore indispensable and overwhelmingly beneficial to humankind, but extremely heavy rainfall can cause great harm: soil erosion, landslides, and flooding. Hailstorm damage to crops, buildings, and livestock can prove very costly.

Origin of precipitation in clouds

Cloud formation

Clouds are formed by the lifting of damp air, which cools by expansion as it encounters the lower pressures existing at higher levels in the atmosphere. The relative humidity increases until the air has become saturated with water vapour, and then condensation occurs on any of the aerosol particles suspended in the air. A wide variety of these exist in concentrations ranging from only a few per cubic centimetre in clean maritime air to perhaps 1 million per cubic cm (16 million per cubic inch) in the highly polluted air of an industrial city. For continuous condensation leading to the formation of cloud droplets, the air must be slightly supersaturated. Among the highly efficient condensation nuclei are sea-salt particles and the particles produced by combustion (e.g., natural forest fires and man-made fires). Many of the larger condensation nuclei over land consist of ammonium sulfate. These are produced by cloud and fog droplets absorbing sulfur dioxide and ammonia from the air. Condensation onto the nuclei continues as rapidly as water vapour is made available through cooling; droplets about 10 μm (0.0004 inch) in diameter are produced in this manner. These droplets constitute a nonprecipitating cloud.