News

Fungi vital to life face growing risk of extinction due to deforestation and more, study shows Mar. 27, 2025, 8:47 AM ET (Straits Times)

When the mycelium of a fungus reaches a certain stage of growth, it begins to produce spores either directly on the somatic hyphae or, more often, on special sporiferous (spore-producing) hyphae, which may be loosely arranged or grouped into intricate structures called fruiting bodies, or sporophores.

The more primitive fungi produce spores in sporangia, which are saclike sporophores whose entire cytoplasmic contents cleave into spores, called sporangiospores. Thus, they differ from more advanced fungi in that their asexual spores are endogenous. Sporangiospores are either naked and flagellated (zoospores) or walled and nonmotile (aplanospores). The more primitive aquatic and terrestrial fungi tend to produce zoospores. The zoospores of aquatic fungi and funguslike organisms swim in the surrounding water by means of one or two variously located flagella (whiplike organs of locomotion). Zoospores produced by terrestrial fungi are released after a rain from the sporangia in which they are borne and swim for a time in the rainwater between soil particles or on the wet surfaces of plants, where the sporangia are formed by parasitic fungi. After some time, the zoospores lose their flagella, surround themselves with walls, and encyst. Each cyst germinates by producing a germ tube. The germ tube may develop a mycelium or a reproductive structure, depending on the species and on the environmental conditions. The bread molds, which are the most advanced of the primitive fungi, produce only aplanospores (nonmotile spores) in their sporangia.

The more advanced fungi do not produce motile spores of any kind, even though some of them are aquatic in fresh or marine waters. In these fungi, asexually produced spores (usually called conidia) are produced exogenously and are typically formed terminally or laterally on special spore-producing hyphae called conidiophores. Conidiophores may be arranged singly on the hyphae or may be grouped in special asexual fruiting bodies, such as flask-shaped pycnidia, mattresslike acervuli, cushion-shaped sporodochia, or sheaflike synnemata.

Sexually produced spores of the higher fungi result from meiosis and are formed either in saclike structures (asci) typical of the Ascomycota or on the surface of club-shaped structures (basidia) typical of the Basidiomycota. Asci and basidia may be borne naked, directly on the hyphae, or in various types of sporophores, called ascocarps (also known as ascomata) or basidiocarps (also known as basidiomata), depending on whether they bear asci or basidia, respectively. Well-known examples of ascocarps are the morels, the cup fungi, and the truffles. Commonly encountered basidiocarps are mushrooms, brackets, puffballs, stinkhorns, and bird’s-nest fungi.

Britannica Chatbot logo

Britannica Chatbot

Chatbot answers are created from Britannica articles using AI. This is a beta feature. AI answers may contain errors. Please verify important information using Britannica articles. About Britannica AI.

Growth

Under favourable environmental conditions, fungal spores germinate and form hyphae. During this process, the spore absorbs water through its wall, the cytoplasm becomes activated, nuclear division takes place, and more cytoplasm is synthesized. The wall initially grows as a spherical structure. Once polarity is established, a hyphal apex forms, and from the wall of the spore a germ tube bulges out, enveloped by a wall of its own that is formed as the germ tube grows.

The hypha may be roughly divided into three regions: (1) the apical zone about 5–10 micrometres (0.0002–0.0004 inch) in length, (2) the subapical region, extending about 40 micrometres (0.002 inch) back of the apical zone, which is rich in cytoplasmic components, such as nuclei, Golgi apparatus, ribosomes, mitochondria, the endoplasmic reticulum, and vesicles, but is devoid of vacuoles, and (3) the zone of vacuolation, which is characterized by the presence of many vacuoles and the accumulation of lipids.

Growth of hyphae in most fungi takes place almost exclusively in the apical zone (i.e., at the very tip). This is the region where the cell wall extends continuously to produce a long hyphal tube. The cytoplasm within the apical zone is filled with numerous vesicles. These bubblelike structures are usually too small to be seen with an ordinary microscope but are clearly evident under the electron microscope. In higher fungi the apical vesicles can be detected with an ordinary microscope equipped with phase-contrast optics as a round spot with a somewhat diffuse boundary. This body is universally known by its German name, the Spitzenkörper, and its position determines the direction of growth of a hypha.

The growing tip eventually gives rise to a branch. This is the beginning of the branched mycelium. Growing tips that come in contact with neighbouring hyphae often fuse with them to form a hyphal net. In such a vigorously growing system, the cytoplasm is in constant motion, streaming toward the growing tips. Eventually, the older hyphae become highly vacuolated and may be stripped of most of their cytoplasm. All living portions of a thallus are potentially capable of growth. If a small piece of mycelium is placed under conditions favourable for growth, it develops into a new thallus, even if no growing tips are included in the severed portion.

Growth of a septate mycelium (i.e., with cross walls between adjacent cells) entails the formation of new septa in the young hyphae. Septa are formed by ringlike growth from the wall of the hypha toward the centre until the septa are complete. In the higher fungi the septum stops growing before it is complete; the result is a central pore through which the cytoplasm flows, thus establishing organic connection throughout the thallus. In contrast to plants, in which the position of the septum separating two daughter cells determines the formation of tissues, the fungal septum is always formed at right angles to the axis of growth. As a result, in fungal tissue formation, the creation of parallel hyphae cannot result from longitudinal septum formation but only from outgrowth of a new branch. In fungi, therefore, the mechanism that determines the point of origin and subsequent direction of growth of hyphal branches is the determining factor in developmental morphogenesis.

The individual fungus is potentially immortal, because it continues to grow at the hyphal tips as long as conditions remain favourable. It is possible that, in undisturbed places, mycelia exist that have grown continuously for many thousands of years. The older parts of the hyphae die and decompose, releasing nitrogen and other nutrients into the soil.

Some species of endophytic fungi, such as Neotyphodium and Epichloë, which invade the seeds of grasses (e.g., ryegrass and fescue) and grow within the plant, grow not through extension of the hyphal tips but by intercalary growth, in which the hyphae attach to the growing cells of the plant. This type of growth enables the hyphae of the fungus to grow at the same rate that the plant grows. Intercalary growth of endophytic fungi was discovered in 2007, although for many years scientists suspected that these fungi possessed unique adaptations that allow them to grow as if they were natural parts of their hosts.

The underground network of hyphae of a mushroom can grow and spread over a very large area, often several metres (yards) in diameter. The underground hyphae obtain food from organic matter in the substratum and grow outward. The hyphal branches at the edge of the mycelium become organized at intervals into elaborate tissues that develop aboveground into mushrooms. Such a circle of mushrooms is known as a fairy ring, because in the Middle Ages it was believed to represent the path of dancing fairies. The ring marks the periphery of an enormous fungus colony, which, if undisturbed, continues to produce ever wider fairy rings year after year. Fungi can grow into enormous colonies. Some thalli of Armillaria species, which are pathogens of forest trees, are among the largest and oldest organisms on Earth.