Hormonal influences
- Related Topics:
- human sexual activity
- courtship
- brooding
- monogamy
- polygamy
Although the exact way by which light affects the reproductive cycle is still disputed, it undoubtedly varies from group to group. In birds, light passes either through the eyes or through the bony tissue of the skull and stimulates the development of certain cells in the forepart of the brain. These cells then secrete a substance that stimulates the anterior pituitary gland, which is located at the base of the brain, to produce an array of regulatory substances (hormones), called gonadotropins, that are carried by the blood to the gonads (ovaries and testes), where they directly stimulate the development of eggs and sperm. The gonads, in turn, produce the sex hormones—estrogen in the female and testosterone in the male—that directly control several overt aspects of reproductive behaviour.
Unlike the higher animals, the gonads of insects apparently do not themselves secrete hormones. Instead, stimulation by the corpus allatum, an organ in insects that corresponds in function to the pituitary gland, causes the secretion of liquid substances on the body surface. These substances are transmitted as liquids, or, even more significantly, as gases, to the recipient, in which they are usually detected by olfaction or taste. Such substances, which are called ectohormones, or pheromones, may serve as the major regulation and communication system for reproduction as well as other behaviour in insects.
In the absence of all other stimuli, many types of sexual behaviour can be induced simply by an injection of the appropriate gonadal hormone. Conversely, removal of the gonads usually inhibits most sexual behaviour. The apparent failure of complete hormonal control over reproductive behaviour has been a subject of much investigation and dispute. There is much evidence that many types of reproductive behaviour are or can be controlled solely by neural mechanisms, bypassing the hormonal system and any effect that it might exert on the nervous system to produce behaviour. Several types of reproductive behaviour controlled solely or almost solely by neural mechanisms are involved in or triggered by the processes that are initiated by courtship.
Modes of sexual attraction
The chief clues by which organisms advertise their readiness to engage in reproductive activity are visual, auditory, and olfactory in nature. Most animals use a combination of two modes; sometimes all three are used.
Visual clues
The appearance of many higher vertebrates changes with the onset of reproductive activity. The so-called prenuptial molt in many male birds results in the attainment of the nuptial plumage, which often differs radically from that possessed by the bird at other times of the year or from that possessed by a nonreproductive individual. The hindquarters of female baboons become bright red in colour, which indicates, or advertises, the fact that she is in estrus and sexually receptive. Such changes in appearance are less common in the lower animals but do occur in many fishes, crabs, and cephalopods (e.g., squids and octopuses).
Often associated with changes in appearance are changes in behaviour, particularly the increase in aggressive behaviour between males, often a prime feature in attracting females; such changes have interesting evolutionary implications. In certain grouse, for example, females are most attracted to males that engage in the greatest amount of fighting. No doubt, fighting in some groups of mammals also serves this function as well as others.
In many animals the rise in aggression takes the form of territoriality, in which an individual, usually a male, defends a particular location or territory by excluding from it all other males of his own kind. Occasionally, other species are also excluded when it is to the advantage of the defending individual to do so. Territorial behaviour involves many functions, not all of which are directly concerned with reproduction. For purposes of advertising, however, territoriality probably reduces the amount of interference between males and also makes it easier for females to find males at the proper time.
Auditory clues
The fact that sound signals can travel around barriers, whereas visual signals cannot, accounts for their widespread use in indicating sexual receptiveness, especially in frogs, insects, and birds. Like visual signals, a sound for advertising purposes usually encodes several pieces of information; for example, the signals usually reveal to the receiver the caller’s species, its sex, and, in some cases, whether or not it is mated. The vocalizations of one type of frog also reveal the number of other males located nearby. This information, a critical clue for females, is a measure of how good the habitat is for depositing eggs. The sounds produced by the wings of mosquitoes attract females and are species specific. Humans have taken advantage of this signal by using artificial sound generators to eradicate certain mosquitoes. Advertising signals also serve to repel other males; a classical example is the territorial song of many songbirds.
Olfactory clues
Researchers have now become aware of the enormous amount of information that is passed between animals by chemical means. Well known are the urine, feces, and scent markings employed by most mammals to delimit their breeding territories and to advertise their sexual state. Males of a number of mammals are capable of determining if a female will be sexually receptive simply by smelling her urine markings. A substance in the urine of male mice, on the other hand, actually induces and accelerates the estrous cycle of females. A female gypsy moth is able to attract males thousands of metres downwind of it simply by releasing minute quantities of its sex pheromone each second. It has been calculated that one female silkworm moth carries only about 1.5 micrograms (1.5 × 10-6 gram) of its sex attractant, called bombykol, at any given moment; theoretically, this is enough to activate more than 1,000,000,000 males. The sex attractant of barnacles, which are otherwise rather sessile (sedentary) organisms, causes individuals to aggregate during the breeding period.
Another possible channel of communication occurs in a few fishes, namely electric discharge. Evidence suggests that weak electric fields and discharges in the Mormyridae of Africa and Gymnotidae of South America represent the major mode of social interaction in these families.
Courtship
Synchrony is the major factor in achieving fertilization in the lower animals, particularly in aquatic forms. In most of these groups, the eggs and sperm are simply discharged into the surrounding water, and fertilization occurs externally. It might be assumed that this procedure would be roughly the same in the higher animals, with perhaps more overt behaviour to achieve synchrony, and that, after the two individuals found each other, fertilization would proceed fairly quickly. This is usually not the case, however. Although fertilization in the higher terrestrial forms involves contact during copulation, it has been suggested that all of the higher animals may have a strong aversion to bodily contact. This aversion is no doubt an antipredator mechanism: close bodily contact signifies being caught. Since females are in an especially helpless situation during copulation, they are particularly wary about bodily contact. In addition, males are particularly aggressive during the breeding period, which further increases the uncertainty of both individuals. These difficulties were solved by the evolution of a collection of behaviours called courtship. Courtship has been defined as the heterosexual reproductive communication system leading to the consummatory sexual act.
Courtship behaviour has many advantages and functions, including the reduction of hostility between the potential sex partners, especially in species in which the male actively defends a territory. The major aspects of such behaviour seem to be appearance, persistence, appeasement, persuasion, and even deception. Because courtship behaviour involves the transmission of information by means of signals, it is useful to define at this point an important group of social signals called displays.
A social signal may be considered any behavioral pattern that effectively conveys information from one individual to another. The term display has been restricted by some authorities to social signals that not only convey information but that, in the course of evolution, have also become “ritualized.” In other words, such signals have become so specialized and exaggerated in form or function that they expressly facilitate a certain type of communication. The visual, auditory, olfactory, tactile, or other patterns by which organisms advertise their readiness to engage in reproductive activity provide examples of displays. Clearly, the kinds of displays utilized by organisms depend on the sensory receptors of the receiver. Whereas higher vertebrates tend to use visual and auditory displays, insects tend toward olfactory and tactile displays.
In animals in which the male takes on a wholly different appearance during the breeding period, natural selection has eliminated from the female’s appearance the “aggressive badges” of males that provoke fighting. It is not without significance that the appearance of the adult female in many species is much like that of the juvenile; this implies to the male a friendly, nonaggressive relationship. When one male approaches another that has intruded into the former’s territory, the outsider may either return the aggressive display or flee. Females, however, usually quietly back up slightly and then slowly move forward again. With each approach, the male’s hostility lessens toward this appeasing, increasingly familiar individual. Often, as in many birds, the females resort to displays that resemble the food-begging behaviour normally seen in the young. Males frequently respond to this display by actually regurgitating food. Male spiders of some species offer the larger and more aggressive females food as bait, and copulation occurs while the female is eating the food rather than her potential mate. Mutual feeding displays, often with nonedible items, are engaged in by a number of insects and birds. In the courtship behaviour of several birds, extremely elaborate displays are utilized to hide the bill from the potential partner, because the bills of these birds are their chief weapons. Some aspects of nest building have been incorporated into the displays of such birds as penguins. Early in the relationship between the individuals, one or both may offer the other stones that are placed in a pile. The actual nest is not constructed until much later, however.
All courtship displays resemble functional behaviours that are appropriate to friendly, bonded situations, such as those between parents and between parents and their offspring. The degree of elaborateness of the display is governed by a number of factors. One is to prevent cross-mating between different species, an occurrence that usually results in the waste of the eggs and sperm. Any specific aspect—i.e., one or more displays—used by an organism in species discrimination is called an isolating mechanism. In many species, the majority of the displays between individuals are a series of identity checks.
Another factor that has an impact upon the complexity of displays is the length of time that the pair bond will endure. Brief relationships are usually, but not always, associated with rather simple courtship activity. In a number of insects, birds, and mammals, the males display on a common courtship ground called a lek or an arena. Females visit these courtship areas, copulate, and leave. The males do not participate in any aspect of parental care; the bond lasts but a few seconds. Yet, despite the brevity of this relationship, in no other courtship system is there the development of such elaborate and almost fantastic displays in both the movements and appearances of the courting males.
Post-fertilization behaviour
Various types of behaviour ensure that a maximum number of fertilized eggs or young will survive to become reproductive adults. Clearly, the number of eggs produced and their size represents a balance achieved by natural selection. This balance conforms to some optimum compromise between producing many eggs containing little food for the development of young or fewer eggs with more provisions.
There has been considerable controversy about the factors that limit the number of offspring an organism can produce. It has been suggested that, among animals in which the offspring are dependent on the parents for varying lengths of time, clutch or litter size has been adjusted through natural selection to the maximum number of offspring that the parents, on the average, can feed. There are, on the other hand, organisms that do not practice parental care and produce millions of eggs. According to one school of thought, these species have such a high fecundity (productivity) because the eggs and larvae suffer a very high mortality rate. Hence, it is necessary for such animals to produce thousands, even millions, of eggs just to obtain a few reproductive adults. An opposing school of thought, however, says that such species have high mortality rates because of their great fecundities. By similar reasoning, low death rates would be the consequence of low fecundity.