Estimates of stellar ages

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

News

First Close Up Picture of Star Outside Our Galaxy Shows a Giant About to Blow Nov. 21, 2024, 6:41 AM ET (New York Times)
Black Hole Tears Star to Shreds, Unleashing Cosmic Shockwaves Nov. 8, 2024, 10:09 PM ET (SciTechDaily)

The shapes of the colour-magnitude diagrams permit estimates of globular-cluster ages. The point at which stars move away from the main sequence is called the turnoff point, For example, in a cluster where stars more massive than about 1.3 solar masses have evolved away from the main sequence at a point just above the position occupied by the Sun, the time required for such a star to exhaust the hydrogen in its core is about 5–6 billion years, and the cluster must be at least as old. More ancient clusters have been identified. In the Galaxy, globular clusters are all very ancient objects, having ages within a few billion years of the average of 11 billion years. In the Magellanic Clouds, however, clusters exist that resemble globular ones, but they contain numerous blue stars and therefore must be relatively young.

Open clusters in the spiral arms of the Galaxy—extreme Population I—tell a somewhat different story. A colour-magnitude diagram can be plotted for a number of different open clusters—for example, the double cluster h and χ Persei, the Pleiades, Praesepe, and M67—with the main feature distinguishing the clusters being their ages. The young cluster h and χ Persei, which is a few million years old, contains stars ranging widely in luminosity. Some stars have already evolved into the supergiant stage (in such a diagram the top of the main sequence is bent over). The stars of luminosity 10,000 times greater than that of the Sun have already largely depleted the hydrogen in their cores and are leaving the main sequence.

The brightest stars of the Pleiades cluster, aged about 100 million years, have begun to leave the main sequence and are approaching the critical phase when they will have exhausted all the hydrogen in their cores. There are no giants in the Pleiades. Presumably, the cluster contained no stars as massive as some of those found in h and χ Persei.

The cluster known as Praesepe, or the Beehive, at an age of 790 million years, is older than the Pleiades. All stars much more luminous than the first magnitude have begun to leave the main sequence; there are some giants. The Hyades, about 620 million years old, displays a similar colour-magnitude array. These clusters contain a number of white dwarfs, indicating that the initially most luminous stars have already run the gamut of evolution. In a very old cluster such as M67, which is 4.5 billion years old, all of the bright main-sequence stars have disappeared.

The colour-magnitude diagrams for globular and open clusters differ quantitatively because the latter show a wider range of ages and differ in chemical composition. Most globular clusters have smaller metal-to-hydrogen ratios than do open clusters or the Sun. The gaps between the red giants and the blue main-sequence stars of the open clusters (Population I) often contain unstable stars such as variables. The Cepheid variable stars, for instance, fall in these gaps (see below Variable stars).

The giant stars of the Praesepe cluster are comparable to the brightest stars in M67. The M67 giants have evolved from the main sequence near an absolute magnitude of +3.5, whereas the Praesepe giants must have masses about twice as great as those of the M67 giants. Giant stars of the same luminosity may therefore have appreciably different masses.