Sea-fishing methods

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: fishing industry

News

Pole-and-line fishing

Line fishing at sea is very popular, not only in traditional fisheries with small boats employing a limited number of hooks but also in industrial operations with large vessels or fleets using thousands of hooks.

Pole-and-line methods are used in tropical Pacific and Atlantic waters to catch young bluefin and yellowfin tuna, and smaller tuna species—such as albacore, skipjack, bonito, and little tunny. The pole, generally bamboo, ranges in length from two to 10 metres, with a line of roughly the same length. Hooks of various sizes are barbless to facilitate baiting and removing the captured fish. To hold onto the pole a “rod rest” is generally used, which is made of canvas, leather, or old rubber tires. Depending on the size of the vessel, the crew may number 30 or more. A large crew is needed, since fishing time may be limited and the maximum possible number of rods must be worked. If larger and heavier fishes are sought, two, three, or even four poles may be linked to a single hook. In this case the fishermen must cooperate closely. Also used successfully are deck- and rail-mounted automated fishing poles operated hydraulically and electrically. The fibreglass rods are mechanically moved up and down, swinging the hooked fish onto the deck and removing the hook before swinging it, unbaited, back overboard.

The tuna is attracted and kept near the vessel by chumming, throwing live bait overboard. The bait is kept alive on board in special tanks in which seawater circulates constantly. Bait can be an expensive problem for tuna fishermen; to catch one ton of tuna, roughly 100 kilograms of live bait fish are needed. Sometimes the hooks are baited, sometimes artificial lures are used with hooks hidden in feathers. When the tuna is “hot” (very eager to take the bait), a naked hook is sufficient. Water spraying helps to attract the tuna; it also serves to camouflage the shadows of boat and crew.

Pole-and-line fishing for tuna is done in daytime from slow-moving vessels. Since considerable space is needed for the angling crew to stand side by side on the lee side of the vessel, Japanese vessels for pole-and-line fishing have a long extended bow. To simplify hauling in the catch these boats also have a low freeboard (i.e., their sides ride low above the water). American tuna vessels hang special crew racks outside the ship over the water.

Drifting longlines

Used for tuna—especially in Japan, Taiwan, and Korea and to a limited extent in South Africa, Cuba, and Oceania—drifting longlines are particularly successful in the tropical Atlantic for big fish in depths from 60 to 250 metres. More than half the fish caught in this manner are yellowfin tuna, one-third are albacores, and the remainder bigeye and bluefin tuna. Sharks, marlins, swordfish, and sailfish, also caught with drifting longlines, are sometimes included in the tuna statistics. Sharks can cause serious losses by attacking hooked tuna. Originally longlining for tuna was a Japanese inshore fishery. At the end of the 19th century, the Japanese were fishing 50 to 65 kilometres off their coasts. This fishery was extended when sailing boats were replaced by motorized craft, and by 1926 the Japanese began longlining for tuna off Taiwan, by 1929 in the Indian Ocean, by 1930 in the South Pacific, by 1938 in the eastern Pacific, by 1952 off the southeastern coast of Australia, and since 1955 in the Atlantic. A longlining crew must be willing to do a hard, though lucrative, job and remain far from home for long periods. The gear is a line composed of 400 to 450 sections, each section with a length of 150 to 400 metres stored in a basket. The total line can have a stretched length of up to 180 kilometres. Each section is composed of subsections of different length. The branch lines with the hooks are composed of three sections that vary in number and length. From one to 12 (generally five) branch lines with hooks form one section; 2,000 hooks are considered the greatest number that can be operated in one set by a vessel. With decreasing catches, attempts have been made to increase the number of hooks; Korean fishermen are said to operate as many as 3,000. The shooting of the line from the stern of the vessel begins early in the morning before sunrise, when the vessel is moving at a speed of about five knots (five nautical miles per hour) or more. During shooting the lines have been tied together and the hooks are baited with frozen Japanese sauries. Each section is tied with a float line and a buoy. Depth of the gear can be regulated by the length of the float lines and the distance of the floats. Ten to 14 men require four hours to perform the task. Hauling from the forepart of the vessel begins in the early afternoon with the help of a line hauler. Depending on the quantity of the catch, hauling can take more than 10 hours with a crew of eight to 10. With preparing and sorting the catch, the usual working day of a crew member totals some 18 hours. Because of this and the fact that vessels stay at sea more than 200 days per year, the Japanese and Taiwanese have experienced difficulty in procuring crews; this problem has led to the development of new technology to simplify the work and reduce manpower. One such improvement is the reel system, made especially for larger vessels. The total line is set, hauled, and stored on a drum, and the floats and branch lines are stowed on separate reels and clipped on or removed as the main line is set or hauled. Research is being done on a coupling apparatus to do this automatically. Another invention is a line-winder system practicable for small vessels. In this a single line is used, hauled and coiled by a line winder in special tanks in the aft part of the vessel.