- Related Topics:
- Podocarpaceae
- Cupressaceae
- Taxaceae
- Cordaitales
- Cordaitopsida
Roots gather water and mineral nutrients from the soil and anchor and support the above-ground portions. Most conifers have rather shallow, if wide-spreading, root systems, making the trunks highly susceptible to wind and surface disturbance. Even the largest conifers are no exceptions, and many of the individual giant sequoias (Sequoiadendron giganteum) in national parks in California are ringed by fences to reduce damage to the roots by the footsteps of millions of admiring visitors. The roots are the least-studied parts of the conifers but appear to be relatively uniform throughout the group. The specialized roots by which the only parasitic conifer, Parasitaxus ustus, attaches to the roots of its conifer hosts are an exception, but the oddest root structures are the “knees” of bald cypresses (Taxodium distichum), conical masses of woody tissue that emerge from the swamp waters around each tree. Their function is still poorly understood.
The fine feeding roots of conifers, like those of many flowering plants, do not work alone. They get a boost in their work by associating with specialized fungi whose structural filaments (hyphae) intermingle with them to form mycorrhizae. There are two distinct types of mycorrhizal associations among the conifers. The majority of species have vesicular-arbuscular mycorrhizae, called endomycorrhizae because the fungal hyphae actually penetrate the cells of the roots. All of the Pinaceae, and only the Pinaceae, have the other kind of root symbiosis, called ectomycorrhizal because the fungi sheath the rootlets and hyphae pass between the outer root cells without penetrating them. Each year, new roots grow out from the sheath and are recolonized only when the fungi later resume active growth. Ectomycorrhizal fungi reproduce through the attached mushrooms that are seen sprouting in pine forests, whereas endomycorrhizal fungi do so underground.