Table of Contents
References & Edit History Quick Facts & Related Topics

Abnormalities of the heart chambers may be serious and even life-threatening. In hypoplastic left heart syndrome, the left-sided heart chambers, including the aorta, are underdeveloped. Infants born with this condition rarely survive more than two or three days. In other cases, only one chamber develops adequately. Survival often depends on the presence of associated compensatory abnormalities, such as continued patency of the ductus arteriosus or the presence of a septal defect, which may allow either decompression of a chamber under elevated pressure or beneficial compensatory intracardiac shunting either from right to left or from left to right.

Abnormalities of the atrial septum

The presence of a septal defect allows blood to be shunted from the left side of the heart to the right, with an increase in blood flow and volume within the pulmonary circulation. Over many years the added burden on the right side of the heart and the elevation of the blood pressure in the lungs may cause the right side of the heart to fail.

Defects in the atrial septum may be small or large and occur most commonly in the midportion in the area prenatally occupied by the aperture called the foramen ovale. Defects lower on the atrial septum may involve the atrioventricular valves and may be associated with incompetence of these valves. In its most extreme form, there may be virtually no septum between the two atrial chambers. Atrial septal defect is a noncyanotic type of congenital heart disease and usually is not associated with serious disability during childhood. A small defect may be associated with problems in young adults, although deterioration can occur in later life. Atrial septal defects, unless small, must usually be closed in childhood.

Abnormalities of the ventricular septum

Defects in the interventricular septum, the partition that separates the lower chambers of the heart, may be small or large, single or multiple, and may exist within any part of the ventricular septum. Small defects are among the most common congenital cardiovascular abnormalities and may be less life-threatening, since many such defects close spontaneously. Small defects often create loud murmurs but, because there is limited flow of blood from left to right, no significant change in the circulation occurs. On the other hand, when a defect is large, a significant amount of blood is shunted from the left ventricle to the right, with a high flow and volume of blood into the pulmonary circulation.

The pulmonary circulation may be damaged by the stresses imposed by a high blood flow over a long period of time. If unchecked, this damage can become irreversible. A further hazard in both small and large ventricular septal defects is the increased risk of bacterial endocarditis (inflammation of the heart lining as a result of bacterial infection). This risk is likely to be high during procedures such as dental extractions, when infection may enter the bloodstream.

Ventricular septal defects are often combined with other congenital cardiac defects. The best-known of these is tetralogy of Fallot, named for the French physician Étienne-Louis-Arthur Fallot, who first described it. In this condition there is a ventricular septal defect, pulmonary stenosis (narrowing of the opening to the pulmonary artery), deviation of the aorta to override the ventricular septum above the ventricular septal defect, and right ventricular hypertrophy (thickening of the muscle of the right ventricle). As a result of the obstruction imposed by the pulmonary stenosis, deoxygenated venous blood is shunted from the right to the left side of the heart into the arterial circulation. Significant amounts of deoxygenated blood in the systemic circulation impart a blue-gray cast to the skin (called cyanosis). A child with this cyanotic form of congenital heart disease can survive beyond infancy, but few survive to adulthood without surgery.

Abnormal origins of the great arteries

In many complex forms of congenital heart disease, the aorta and pulmonary artery do not originate from their normal areas of the ventricles. In one of the most common of such cases—transposition of the great arteries—the aorta originates from the right ventricle and receives deoxygenated blood from the superior and inferior venae cavae, and the pulmonary artery arises from the left ventricle and receives fully oxygenated pulmonary venous blood. Survival in such cases depends on a naturally occurring communication between the two sides of the heart that allows oxygenated blood to enter the aorta; if such a communication is not present naturally, it may be created medically or surgically. Both the aorta and the pulmonary artery may originate from the right ventricle; this form of abnormal origin of the arteries usually is associated with a ventricular septal defect and, on occasion, pulmonary stenosis. This combination of defects is a severe form of cyanotic heart disease.

Abnormalities of the valves

The most common congenital abnormality of the cardiac valves affects the aortic valve. The normal aortic valve usually has three cusps, or leaflets, but the valve is bicuspid in 1 to 2 percent of the population. A bicuspid aortic valve is not necessarily life-threatening, but in some persons it becomes thickened and obstructed (stenotic). With age the valve may also become incompetent or act as a nidus (focus of infection) for bacterial endocarditis. Congenital aortic valve stenosis, if severe, results in hypertrophy of the left ventricular myocardium and may rarely be responsible for sudden death in asymptomatic individuals. Even minor forms of aortic valve stenosis may grow progressively severe and are likely, with the passage of time, to require surgical treatment.

In contrast to aortic valve stenosis, pulmonary valve stenosis, if mild, is usually well tolerated and does not require surgical treatment. More severe forms of the disease may require surgery or balloon dilation (see below Surgical treatment of the heart).

Abnormalities of the myocardium and endocardium

Congenital abnormalities in the myocardium—for example, tumours—may be present at birth, but they are rare. Abnormalities of the endocardium may be present at birth, but they are also rare. They include fibroelastosis, a disease in which the endocardium develops a thick fibrous coat that interferes with the normal contraction and relaxation of the heart. This condition cannot be treated surgically and is usually life-threatening.

Abnormalities of the coronary arteries

The coronary arteries may arise abnormally from a pulmonary artery rather than from the aorta, with the result that deoxygenated blood instead of oxygenated blood flows through the heart muscle. Abnormal openings, called coronary arterial venous fistulas, may be present between the coronary arteries and the chambers of the heart. One or more of the three main coronary arteries may be absent. While these abnormalities are frequently asymptomatic, they may be associated with early, often sudden, death. If necessary, most coronary arterial abnormalities can be corrected surgically.

Abnormalities of the aorta

One of the most common congenital cardiovascular abnormalities involves the aorta. In coarctation of the aorta there is a narrowing of the aortic wall, usually at that portion of the aorta just beyond the site at which the main blood vessel to the left arm (the subclavian artery) originates. As a result of the narrowing or obstruction at this point, blood flow to the lower half of the body is diminished, and hypertension develops in the upper half of the body. This defect may give rise to heart failure in early infancy or complications in later childhood and adulthood.

Male muscle, man flexing arm, bicep curl.
Britannica Quiz
Facts You Should Know: The Human Body Quiz

During fetal life and immediately after birth, the ductus arteriosus connects the pulmonary artery and the first segment of the descending thoracic aorta. The function of this duct in utero is to shunt blood away from the lungs. If the ductus remains open after birth, excessive blood may flow into the lungs, resulting in pulmonary congestion and heart failure. Spontaneous closure of the ductus arteriosus may be delayed in premature newborn infants, exacerbating the respiratory problems common to them. If necessary, the ductus arteriosus can be induced to close with drugs in premature infants, and it can be closed in older infants and children by surgery or insertion of a prosthetic occluder by cardiac catheterization. Finally, there may be direct communication between the aorta and pulmonary arteries because the truncus arteriosus has either partially or completely failed to partition.

Anomalous pulmonary venous return

The pulmonary veins from the right and left lungs may connect either directly or indirectly to the right, instead of the left, atrium. In this condition the abnormal venous channel draining to the right side of the heart may become obstructed. Infants born with total anomalous (abnormal) pulmonary venous drainage usually develop problems within the first few weeks or months and thus require cardiac surgery. Partial forms of anomalous pulmonary venous return, in which only one or two pulmonary veins are connected abnormally, may have few symptoms, although surgical correction may be done if required.

Anomalies of the venae cavae

The most common abnormalities of the venae cavae, the major veins returning venous blood to the right side of the heart, are a persistent left superior vena cava (normally there is only one superior vena cava opening to the right side of the heart) and an abnormal connection of the inferior vena cava to the heart. These abnormalities are frequently associated with intracardiac structural faults.

Michael Francis Oliver Michael James Godman