Table of Contents
References & Edit History Quick Facts & Related Topics

Repair of acquired cardiac defects

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: cardiovascular system disease

News

Air pollution spurs inflammation in heart failure patients Nov. 17, 2024, 11:59 PM ET (News-Medical)
Excessive sedentary time linked to higher heart disease risk Nov. 16, 2024, 12:56 AM ET (News-Medical)
Genetic study links heart shape to cardiovascular disease Nov. 14, 2024, 8:31 AM ET (Medical Xpress)

Valvular disease

Destroyed heart valves can be replaced with artificial valves (prostheses) made of stainless steel, Dacron™, or other special materials. The heart-lung machine is used during these operations, in which one, two, or even three cardiac valves may be removed and replaced with the appropriate artificial valve. The use of both homograft valves (obtained from human beings after death) and heterograft valves (secured from animals) is widespread. One of the advantages of both types is the absence of clotting, which occurs occasionally with the use of artificial valves. Most homograft and heterograft valves have a durability of 10–15 years. There is a risk of endocarditis with all types of valves.

Chronic constrictive pericarditis

Chronic constrictive pericarditis can affect the surface of the heart and the sac (pericardium) surrounding it. The pericardium becomes thickened and fibrotic, and over a period of time it constricts the heart so that the normal filling of the ventricles during the resting phase of the cardiac cycle is limited. This condition in turn reduces the output of the heart and eventually affects all the organ systems, including the brain, liver, and kidneys. Treatment is the surgical removal of the thickened pericardium around the heart, which permits normal filling and expansion of the ventricles and restores adequate cardiac output to the vital organs.

Cardiac pacemakers

The normal rhythm of the heart is generated by spontaneous electrical activity in cells in an area of the heart called the sinoatrial node. The electrical activity is usually at a rate of about 70 beats per minute at rest and is transmitted to the pumping chambers of the heart, the atria, and the ventricles through a specialized conducting system. The electrical activity causes contraction of the heart muscle, which results in a detectable pulse at the wrist and elsewhere. Disease of the sinus node (sick sinus syndrome) or the conducting system (heart block) can cause an abnormally slow rhythm of the heart; because blood supply to the brain is inadequate, severe disease can cause loss of consciousness. This occurs if there is no heartbeat for about six seconds.

A pacemaker is a device that artificially stimulates the heart when the abnormal electrical activity is absent. A pacemaker comprises a pulse generator connected to the heart by wire or electrode. The pulse generator has a battery power source and electronic circuitry that can generate an artificial stimulus at a predetermined rate. It can also detect normal activity of the heart so that the artificial stimulus is only discharged when the natural activity is absent. In this way the pacemaker functions on demand, inserting an artificial beat as required.

The pulse generator is usually placed under the skin over the right or left chest and has enough power to last several years. The electrode is passed from the pulse generator along a vein and is connected to either the atrium or ventricle, depending on whether the underlying problem is sick sinus syndrome or heart block. In many models the performance of the pacemaker can be altered by using radio-frequency signals to alter its programmed settings. Some pacemakers may last up to 15 years and can be reused; the most common lifetime is seven years.

Heart wounds

Heart wounds are caused by blunt or penetrating instruments. The rapid deceleration often experienced in automobile accidents is a common cause of injury to the heart muscle, resulting in bruising and even disruption of a valve or the ventricular septum. Both bullet and stab wounds account for many patients treated in the emergency clinics of major hospitals. Prompt diagnosis and effective surgical treatment, usually consisting of control of bleeding by sewing the heart muscle at the point of entry of the foreign object, have resulted in a high rate of successful treatment.