Table of Contents
References & Edit History Related Topics

The variety of floodplain deposits and features raises the question as to which process, lateral river migration or overbank flow, is the most important in floodplain development. There is probably no universal answer to this question, but rates of the depositional processes suggest that most floodplains should result primarily from the processes and deposition associated with lateral migration. Assuming that vertical accretion proceeds according to the increments indicated in the previous section, the level of a floodplain constructed entirely by overbank deposition should rise at a progressively decreasing rate. This follows because as the floodplain surface is elevated relative to the channel floor, the river stage needed to overtop the banks is also increasing. The floodplain surface, therefore, is inundated less frequently, and the growth rate necessarily decreases. Indeed, studies have shown that the initial phase of floodplain elevation by vertical accretion is quite rapid because flooding occurs frequently. It is generally accepted that 80 to 90 percent of floodplain construction by vertical accretion would take place in the first 50 years of the process. A three-metre thick overbank deposit would probably take several thousand years to accumulate.

Given the above, it seems certain that the total thickness of vertically accumulated sediment will depend primarily on the rate at which the river migrates laterally. In fact, the total thickness of overbank deposition will be controlled by the amount of time it takes a river to migrate across the entire width of the valley. For example, if a floodplain is one kilometre wide and the river shifts laterally at a rate of two metres a year, it will take approximately 500 years for the river to migrate completely across the valley bottom. At any given point in the valley bottom, several metres of overbank sediment may accumulate in that 500-year interval, but the entire deposit will be reworked by lateral erosion when the river once again reoccupies that particular position. Thus, the lateral migration rate becomes a limiting factor on the thickness of vertical accretion deposits. In rivers demonstrating rapid lateral migration, minor rates of vertical accretion (see above Floodplain deposits, origins, and features) would be unlikely to create floodplain surfaces that are predominantly formed by overbank deposition. This conclusion, however, cannot be considered as an inviolate rule. Many rivers have extremely slow rates of lateral migration when geologic conditions prevent bank erosion. In these cases, vertical accretion may be the dominant process of floodplain development.

A sample of lateral migration rates in alluvial rivers of various sizes is given in the table.

Rates of lateral migration of rivers in valleys
river and location approximate size of drainage area (square kilometres) amount of movement (metres) period of measurement rate of movement (metres per year)
tidal creeks in Massachusetts 0 60–75 yr 0
Normal Brook near Terre Haute, Ind. ± 2.6 9 1897–1910 0.7
Watts Branch near Rockville, Md. 10 0–3 1915–55 0–0.08
10 2 1953–56 0.6
Rock Creek near Washington, D.C. 18–155 0–6 1915–55 0–0.15
Middle River near Bethlehem Church, near Staunton, Va. 47 8 10–15 yr 0.76
Tributary to Minnesota River near New Ulm, Minn. 26–39 76 1910–38 2.7
North River, Parnassus quadrangle, Virginia 130 125 1834–84 2.4
Seneca Creek at Dawsonville, Md. 262 0–3 50–100 yr 0–0.06
Laramie River near Ft. Laramie, Wyo. 11,900 30 1851–1954 0.3
Minnesota River near New Ulm, Minn. 25,900 0 1910–38 0
Ramganga River near Shahabad, India 259,000
259,000
259,000
880
320
240
1795–1806
1806–83
1883–1945
80
4.3
4
Colorado River near Needles, Calif. 441,900
441,900
441,900
441,900
441,900
6,100
915
1,220
30
1,160
1858–83
1883–1903
1903–52
1942–52
1903–42
240
46
25
3
30
Yukon River at Koyukuk River, Alaska 829,000 1,680 170 yr 10
Yukon River at Holy Cross, Alaska 829,000 730 1896–1916 37
Kosi River, North Bihar, India 112,500 150 yr 750
Missouri River near Peru, Neb. 906,000 1,500 1883–1903 76
Mississippi River near Rosedale, Miss. 2,850,000
2,850,000
725
2,900
*1930–45
*1881–1913
*48
*192
Source: Adapted from M.G. Wolman and L.B. Leopold, "River Flood Plains: Some Observations on Their Formation," U.S. Geological Survey professional paper no. 282-C, 1957, courtesy of the U.S. Department of the Interior, U.S. Geological Survey.

River terraces

Terraces are flat surfaces preserved in valleys that represent floodplains developed when the river flowed at a higher elevation than its present channel. A terrace consists of two distinct topographic components: (1) a tread, which is the flat surface of the former floodplain, and (2) a scarp, which is the steep slope that connects the tread to any surface standing lower in the valley. Terraces are commonly used to reconstruct the history of a river valley. Because the presence of a terrace scarp requires river downcutting, some significant change in controlling factors must have occurred between the time that the tread formed and the time that the scarp was produced. Usually the phase of trenching begins as a response to climatic change, tectonics (movement and deformation of the crust), or baselevel lowering. Like most floodplains, abandoned or active, the surface of the tread is normally underlain by alluvium deposited by the river. Strictly speaking, however, these deposits are not part of the terrace because the term refers only to the topographic form.

The extent to which a terrace is preserved in a valley usually depends on the age of the surface. Old terraces are those that were formed when the river flowed at very high levels above the present-day river channel, while terraces of even greater age are those usually cut into widely separated, isolated segments. In contrast, very young terraces may be essentially continuous along the entire length of the trunk valley, being dissected only where tributary streams emerge from the valley sides. These young terraces may be close in elevation to the modern floodplain, and the two surfaces may be difficult to distinguish. This difficulty emphasizes the importance of how a floodplain and terrace are defined. Presumably the surface of a terrace is no longer related to the modern hydrology in terms of frequency and magnitude of flow events. Thus, any flat surface standing above the level inundated by a flow having a recurrence interval of 1.5 years is by definition a terrace. The complication arises, however, because some low terraces may be covered by floodwater during events of higher magnitude and lower frequency. These terrace surfaces are inundated by the modern hydrologic system but less frequently than the definition of a hydrologic floodplain would allow. In some cases, a low terrace may be underlain by sediment that has been continuously deposited for thousands of years during infrequent large floods.

Terraces are most commonly classified on the basis of topographic relationships between their segments. Where terrace treads stand at the same elevation on both sides of the valley, they are called paired terraces. The surfaces of the paired relationship are presumed to be equivalent in age and part of the same abandoned floodplain. Where terrace levels are different across the valley, they are said to be unpaired terraces. In most cases the staggered elevations in these systems were formed when the river eroded both laterally and vertically during the phase of degradation. Levels across the valley, therefore, are not precisely the same age but differ by the amount of time needed for the river to cross from one side of the valley to the other. Actually, the topographic classification is purely descriptive and is not intended to be used as a method for determining terrace origin. A more useful classification provides a genetic connotation by categorizing terraces as either erosional or depositional. Erosional terraces are those in which the tread (abandoned floodplain) has been formed primarily by lateral erosion under the conditions of a constant baselevel. Where erosion cuts across bedrock, the terms bench, strath, or rock-cut terrace are employed. The terms fill-cut or fillstrath are used to indicate that the lateral erosion has occurred across unconsolidated debris. Depositional terraces are those in which the tread represents the upper surface of a valley fill.

Rock-cut terraces and depositional terraces can be distinguished by certain properties that reflect their mode of origin. Rock-cut surfaces are usually capped by a uniformly thin layer of alluvium, the total thickness of which is determined by the depth of scour of the river that formed the terrace tread. In addition, the surface eroded across the bedrock or older alluvium is remarkably flat and essentially mirrors the configuration of the tread. In contrast, alluvium beneath the tread of a depositional terrace can be extremely variable in thickness and usually exceeds any reasonable scouring depth of the associated river; moreover, the eroded surface in the bedrock beneath the fill can be very irregular even though the surface of the terrace tread is flat. The most difficult terrace to distinguish by these criteria are erosional terraces that are cut across a thick, unconsolidated valley fill.

Origin of river terraces

The treads of river terraces are formed by processes analogous to those that produce floodplains. In depositional terraces, however, the origin of the now abandoned floodplain is much less significant than the long-term episode of valley filling that preceded the final embellishment of the tread. The thickness of valley-fill deposits is much greater than anything that could be produced by vertical accretion on a floodplain surface. In fact, most of the valley fill is composed of channel deposits rather than floodplain deposits. Thus, the sediment beneath a depositional terrace reflects a continuously rising valley floor. The tread represents the highest level attained by the valley floor as it rose during this episode of aggradation, and the upper skim of the deposit is that affected by processes of floodplain origin. What caused the extended period of valley filling is thus the important aspect of depositional terraces rather than the processes that developed the final character of the tread.

Valley filling that creates the underpinning of a depositional terrace occurs when the amount of sediment produced in a basin over an extended period of time is greater than the amount that the river system can remove from the basin. Usually this phenomenon is produced by climate change, influx of glacial outwash, uplift in source areas, or rises in baselevel that trigger deposition in the lower portions of the basin. Development of the actual terrace requires an interval subsequent to valley filling during which the river entrenches into the fill. Many of the same factors that trigger valley filling are those which, oppositely impressed, initiate the episode of entrenchment.

The relationship between glaciation and depositional terraces constitutes the cornerstone of reconstructing geomorphic history in valleys that have been glaciated. The balance between load and discharge that ultimately determines whether a river will deposit or erode is severely altered during glacial episodes. An enormous volume of coarse-grained bed load is carried by an active glacier and released at the glacial margin. This influx of sediment simply overwhelms the downstream fluvial system, even though meltwater produced near the ice margin provides greater than normal transporting power to a river emerging from the glacier. As a result, valley reaches downstream from the ice margin begin to fill with coarse debris (outwash), which cannot be transported on the channel gradient that existed prior to the glacial event. Deposition ensues, and the valley aggrades until the gradient, load, and discharge conditions are modified enough to allow transport of the entire load or to initiate river entrenchment into the fill.

Valley fills composed of outwash and the depositional terraces that result from later entrenchment are closely associated with moraines (ridges composed of rock debris deposited directly by ice) developed simultaneously at the ice margin. Characteristically the gradient on the terrace surface increases drastically near the moraine, and outwash beneath the terrace tread thickens significantly and becomes notably more coarse-grained. The terrace and its associated alluvium end at the moraine, being totally absent up the valley from the morainal position. This allows the location of an ice margin to be determined as the upstream extremity of an outwash terrace even if the associated moraine has been removed by subsequent erosion.

In unglaciated river systems, valley fills are most commonly associated with climatic changes, tectonics, or rising sea levels. Climatically produced valley aggradation is controlled by very complex interrelationships between precipitation, vegetation, and the amount of sediment yielded from basin slopes. Every climatic regime has a particular combination of precipitation and vegetation type and density that will produce a maximum value of sediment yield. The effect of a particular climate change can increase or decrease sediment yield in a basin, depending on what conditions existed prior to the climate change with respect to the values that would produce the maximum yield.

In contrast to depositional terraces, erosional terraces are specifically related to the processes of floodplain development. Erosional terraces are those in which lateral river migration and lateral accretion are the dominant processes in constructing the floodplain surface that subsequently becomes the terrace tread. Most of the terrace surface is underlain by point bar deposits. These deposits are usually thin and maintain a constant thickness of sediment that rests on a flat surface eroded across the underlying bedrock or unconsolidated debris. The thickness of the point bar deposits is controlled by the depth to which the formative river was able to scour during the formation of the floodplain. Any thickness greater than the depth of scour indicates that deposits underlying the tread represent a valley fill (depositional terrace) rather than an erosional terrace. Rock-cut terraces were first and best described in the Big Horn Basin of Wyoming, although some of the terraces in that area may be depositional in origin.

Terraces and geomorphic history

The use of terraces to determine regional geomorphic history requires careful field study involving correlation of surfaces within a valley or between valleys. The process is not easy, because each terrace sequence must be examined according to its own climatic, tectonic, and geologic setting. Terraces that have been dissected into segments often have only isolated remnants of the original surface. These remnants are commonly separated by considerable distances, often many kilometres. Reconstruction of the original terrace surface requires that the isolated remnants be correctly correlated along the length of the valley, and every method used in this procedure has fundamental assumptions that may or may not be valid. Furthermore, errors in physical correlation of surfaces lead to faulty interpretation of valley history. This problem is exacerbated because fluvial mechanics may be out of phase in different parts of a valley or from one valley to its adjacent neighbour. For example, pronounced filling by outwash deposition (discussed above) may be occurring in the upper reaches of a major valley such as the Mississippi during the maximum of a glacial stage. At the same time, however, near the Gulf of Mexico, the lower reaches of the Mississippi River would be actively entrenching because baselevel (sea level) is drastically lowered during glacial periods when storage of ice on the continents upsets the balance in the hydrologic cycle. Deposition and entrenchment involved in terrace formation is clearly not synchronous along the entire length of such a river system.

In addition, it is now known that more than one terrace can result during a period of entrenchment. This indicates that the downcutting that presumably results during a change in climate or some other controlling factor may not be a continuous unidirectional event. Instead, the response to that change is complex. It often involves pauses in vertical entrenchment during which the river may form erosional terraces by lateral planation or depositional terraces by short intervals of valley alluviation. The complicating factor with regard to valley history is that multiple terraces may be formed during an adjustment to one equilibrium-disrupting change in factors that control fluvial mechanics.

Alluvial fans

Alluvial fans are depositional features formed at one end of an erosional-depositional system in which sediment is transferred from one part of a watershed to another. Erosion is dominant in the upper part of the watershed, and deposition occurs at its lower reaches where sediment is free to accumulate without being confined within a river valley. The two areas are linked by a single trunk river. Fans are best developed where erosion occurs in a mountain area and sediment for the fan is placed in an adjacent basin. A fan is best described topographically as a segment of a cone that radiates away from a single point source. The apex of the cone stands where the trunk river emerges from the confines of the upland area. It is possible, however, that the point source can shift to a position well down the original fan surface. This occurs when the trunk stream entrenches the fan surface, and the mountain-bred flow, still confined in the channel cut into the fan, eventually emerges at a location far removed from the mountain front. The location where the stream emerges onto the fan surface then becomes the point source for a still younger fan segment. Fans also expand upward and laterally. In many cases, adjacent fans merge at their lateral extremities, and the individual cone or fan shape becomes obliterated. Widespread coalescing of fans produces a rather nondescript topography that covers an entire piedmont area (stretch of land along the base of mountains) and is commonly referred to as a bajada, alluvial plain, or alluvial slope.

Alluvial fans have been studied in greatest detail in areas of arid or semiarid climate, where they tend to be larger and better preserved. This is especially true where considerable relief exists between the erosional part of the basin and the zone of deposition. Fans in this particular climatic setting have been described in various parts of the world, including the western United States, Afghanistan, Pakistan, Peru, Central Asia, and many other semiarid regions where mountains exist adjacent to well-defined basins. The dominance of fans in arid and semiarid regions does not mean that fans are absent in other climatic zones. On the contrary, fans can develop in almost any climatic zone where the physiographic controls are similar. For example, fans have been identified in Canada, Sweden, Japan, Alaska, and very high mountain areas such as the Alps and Himalayas. The one common factor that links these fans together, regardless of their climatic setting, is the similar plan-view geometry. Other characteristics, such as morphology and depositional processes, may be significantly different, however. The widespread distribution of fans has led to the characterization of these features as being one of two types—either dry or wet. Dry fans are those that seem to form under conditions of ephemeral flow, while wet fans are those that are created by streams that flow constantly. This classification suggests that fan type is climatically controlled, because ephemeral flow is normally associated with the spasmodic rainfall typical of arid climates, and perennial streamflow is more dominant in humid climates.