Many models describe the way protons and neutrons are arranged inside a nucleus. One of the most successful and simple to understand is the shell model. In this model the protons and neutrons occupy separate systems of shells, analogous to the shells in which electrons are found outside the nucleus. From light to heavy nuclei, the proton and neutron shells are filled (separately) in much the same way as electron shells are filled in an atom.
Like the Bohr atomic model, the nucleus has energy levels that correspond to processes in which protons and neutrons make quantum leaps up and down between their allowed orbits. Because energies in the nucleus are so much greater than those associated with electrons, however, the photons emitted or absorbed in these reactions tend to be in the X-ray or gamma ray portions of the electromagnetic spectrum, rather than the visible light portion.
When a nucleus forms from protons and neutrons, an interesting regularity can be seen: the mass of the nucleus is slightly less than the sum of the masses of the constituent protons and neutrons. This consistent discrepancy is not large—typically only a fraction of a percent—but it is significant. By Albert Einstein’s principles of relativity, this small mass deficit can be converted into energy via the equation E = mc2. Thus, in order to break a nucleus into its constituent protons and neutrons, energy must be supplied to make up this mass deficit. The energy corresponding to the mass deficit is called the binding energy of the nucleus, and, as the name suggests, it represents the energy required to tie the nucleus together. The binding energy varies across the periodic table and is at a maximum for iron, which is thus the most stable element.
Radioactive decay
The nuclei of most everyday atoms are stable—that is, they do not change over time. This statement is somewhat misleading, however, because nuclei that are not stable generally do not last long and hence tend not to be part of everyday experience. In fact, most of the known isotopes of nuclei are not stable; instead, they go through a process called radioactive decay, which often changes the identity of the original atom.
In radioactive decay a nucleus will remain unchanged for some unpredictable period and then emit a high-speed particle or photon, after which a different nucleus will have replaced the original. Each unstable isotope decays at a different rate; that is, each has a different probability of decaying within a given period of time (see decay constant). A collection of identical unstable nuclei do not all decay at once. Instead, like popcorn popping in a pan, they will decay individually over a period of time. The time that it takes for half of the original sample to decay is called the half-life of the isotope. Half-lives of known isotopes range from microseconds to billions of years. Uranium-238 (238U) has a half-life of about 4.5 billion years, which is approximately the time that has elapsed since the formation of the solar system. Thus, Earth has about half of the 238U that it had when it was formed.
There are three different types of radioactive decay. In the late 19th century, when radiation was still mysterious, these forms of decay were denoted alpha, beta, and gamma. In alpha decay a nucleus ejects two protons and two neutrons, all locked together in what is called an alpha particle (later discovered to be identical to the nucleus of a normal helium atom). The daughter, or decayed, nucleus will have two fewer protons and two fewer neutrons than the original and hence will be the nucleus of a different chemical element. Once the electrons have rearranged themselves (and the two excess electrons have wandered off), the atom will, in fact, have changed identity.
In beta decay one of the neutrons in the nucleus turns into a proton, a fast-moving electron, and a particle called a neutrino. This emission of fast electrons is called beta radiation. The daughter nucleus has one fewer neutron and one more proton than the original and hence, again, is a different chemical element.
In gamma decay a proton or neutron makes a quantum leap from a higher to a lower orbit, emitting a high-energy photon in the process. In this case the chemical identity of the daughter nucleus is the same as the original.
When a radioactive nucleus decays, it often happens that the daughter nucleus is radioactive as well. This daughter will decay in turn, and the daughter nucleus of that decay may be radioactive as well. Thus, a collection of identical atoms may, over time, be turned into a mixture of many kinds of atoms because of successive decays. Such decays will continue until stable daughter nuclei are produced. This process, called a decay chain, operates everywhere in nature. For example, uranium-238 decays with a half-life of 4.5 billion years into thorium-234, which decays in 24 days into protactinium-234, which also decays. This process continues until it gets to lead-206, which is stable (see uranium-thorium-lead dating). Dangerous elements such as radium and radon are continually produced in Earth’s crust as intermediary steps in decay chains.
Nuclear energy
It is almost impossible to have lived at any time since the mid-20th century and not be aware that energy can be derived from the atomic nucleus. The basic physical principle behind this fact is that the total mass present after a nuclear reaction is less than before the reaction. This difference in mass, via the equation E = mc2, is converted into what is called nuclear energy.
There are two types of nuclear processes that can produce energy—nuclear fission and nuclear fusion. In fission a heavy nucleus (such as uranium) is split into a collection of lighter nuclei and fast-moving particles. The energy at the end typically appears in the kinetic energy of the final particles. Nuclear fission is used in nuclear reactors to produce commercial electricity. It depends on the fact that a particular isotope of uranium (235U) behaves in a particular way when it is hit by a neutron. The nucleus breaks apart and emits several particles. Included in the debris of the fission are two or three more free neutrons that can produce fission in other nuclei in a chain reaction. This chain reaction can be controlled and used to heat water into steam, which can then be used to turn turbines in an electrical generator.
Fusion refers to a process in which two or more light nuclei come together to form a heavier nucleus. The most common fusion process in nature is one in which four protons come together to form a helium nucleus (two protons and two neutrons) and some other particles. This is the process by which energy is generated in stars. Scientists have not yet learned to produce a controllable, commercially useful nuclear fusion on Earth, which remains a goal for the future.
James Trefil