Table of Contents
References & Edit History Related Topics

Diseases of nutrition

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Diseases of nutrition include the effects of undernutrition, prevalent in less-developed areas but present even in affluent societies, and the effects of nutritional excess.

Diseases of nutritional excess

Obesity, perhaps the most important nutritional disease in the United States and Europe, results usually from excessive caloric intake, although emotional, genetic, and endocrine factors may be present.

Obesity predisposes one toward several serious disorders, including a state of chronic oxygen deficiency called the hypoventilation syndrome; high blood pressure; and atherosclerosis, a degenerative condition of the blood vessels that is discussed further below.

Excessive intake of certain vitamins, especially vitamins A and D, can also produce disease. Vitamins A and D are both fat-soluble and tend to accumulate to toxic levels in the bodily tissues when taken in excessive quantities. Vitamin C and the B vitamins, soluble in water, are more easily metabolized or excreted and, therefore, rarely accumulate to toxic levels.

Diseases of nutritional deficiency

Nutritional deficiencies may take the form of inadequacies of (1) total caloric intake, (2) protein intake, or (3) certain essential nutrients such as the vitamins and, more rarely, specific amino acids (components of proteins) and fatty acids.

Protein-calorie malnutrition remains prevalent in certain areas. It has been estimated that about two-thirds of the world’s population has less than enough food to eat. Not only is the quantity inadequate but the quality of the food is nutritionally deficient and usually lacks protein. In deprived areas malnutrition has its greatest impact on the young. Deaths from protein-calorie malnutrition result from the failure of the child to thrive, with progressive weight loss and weakness, which in turn can lead to infection and disease, usually some form of gastrointestinal bacterial or parasitic disorder. In other circumstances adequate calories may be available, but a deficiency of protein induces a disorder known as kwashiorkor.

Vitamin deficiencies, the most important forms of selective malnutrition, may arise in a variety of ways, the most common and the most important being an improper, inadequate diet. When the total caloric intake is inadequate, vitamin deficiencies may also occur, but in these circumstances the more profound lack of calories and proteins masks the lack of vitamins.

Vitamin deficiencies may also be encountered despite a diet that is apparently adequate nutritionally. One source of such a deficiency, called secondary, is interference with absorption of the vitamin. Pernicious anemia is a classic example of this phenomenon. This disorder results from an autoimmune response to intrinsic factor, a substance normally found in the stomach lining with which vitamin B12 must form a complex to be absorbed. (Vitamin B12 is necessary for red cells to form properly.) The basis of pernicious anemia, then, is a lack of absorption of vitamin B12. The absence of certain digestive enzymes, as is found in pancreatic disease, can lead to the inability to digest and absorb fats and the fat-soluble vitamins (A, D, E, and K). Impaired uptake of vitamins may be encountered in gastrointestinal diseases. Some of these diseases reduce the absorptive function of the bowel. Similarly, diseases associated with severe, prolonged vomiting may interfere with adequate absorption.

Avitaminosis (vitamin lack) may be encountered when there are increased losses of vitamins such as occur with chronic severe diarrhea or excessive sweating or when there are increased requirements for vitamins during periods of rapid growth, especially during childhood and pregnancy. Fever and the endocrine disorder hyperthyroidism are two additional examples of conditions that require higher than the usual levels of vitamin intake. Unless the diet is adjusted to the increased requirements, deficiencies may develop. Lastly, artificial manipulation of the body and its natural metabolic pathways, as by certain surgical procedures or the administration of various drugs, can lead to avitaminoses. (Diseases involving deficiencies of particular vitamins are discussed in nutrition: Deficiency diseases: Vitamins.)

Diseases of neuropsychiatric origin

Diseases of neuropsychiatric origin afflict large segments of the population. For example, a total of about 2.8 million persons in the United States suffer from three major psychiatric diseases—schizophrenia, major depression, and mania—and three major neurological disorders—Alzheimer’s disease, Huntington’s chorea, and Parkinson’s disease. These six conditions will be briefly reviewed here. More in-depth coverage is found in the articles mental disorder and nervous system disease.

The key function of the nervous system is to collect information about the body and its external environment, process the information, and coordinate the body’s responses to that information. This complex function depends on each nerve cell (neuron) receiving signals from other neurons and transmitting this input to still other neurons. This critical input and output of communication (signaling) between neurons is mediated by chemical transmitter molecules (neurotransmitters). Neurotransmitters are synthesized by nerve cells and released from one cell to another across a narrow gap between the two neurons known as the synapse. Eight different major neurotransmitters and a large number of neuropeptide molecules (which serve to modulate the effects of neurotransmitters) have been identified. Different types of nerve cells respond to different neurotransmitters and neuropeptides. Chemical signaling between nerve cells is rapid and precise and can occur over long distances. The precision is due to receptor molecules, which are activated following their recognition and binding of specific neurotransmitters. In some types of nerves the synapses do not possess receptors, in which case interneuronal communication is achieved by electrical transmission. In many neuropsychiatric diseases alterations in the levels of transmitter substances appear to play a major role in pathogenesis.