History of space exploration
- Key People:
- Nicole Aunapu Mann
- Kayla Barron
- Jessica Watkins
- Raja Chari
- Jonny Kim
- Related Topics:
- spaceflight
- astronaut
- space law
- spacecraft
- space elevator
News •
Prelude to spaceflight
Precursors in fiction and fact
Since ancient times, people around the world have studied the heavens and used their observations and explanations of astronomical phenomena for both religious and practical purposes. Some dreamed of leaving Earth to explore other worlds. For example, the French satirist Cyrano de Bergerac in the 17th century wrote Histoire comique des états et empires de la lune (1656) and Histoire comique des états et empires du soleil (1662; together in English as A Voyage to the Moon: With Some Account of the Solar World, 1754), describing fictional journeys to the Moon and the Sun. Two centuries later the French author Jules Verne and the English novelist and historian H.G. Wells infused their stories with descriptions of outer space and of spaceflight that were consistent with the best understanding of the time. Verne’s De la Terre à la Lune (1865; From the Earth to the Moon) and Wells’s The War of the Worlds (1898) and The First Men in the Moon (1901) used sound scientific principles to describe space travel and encounters with alien beings.
In order to translate these fictional images of space travel into reality, it was necessary to devise some practical means of countering the influence of Earth’s gravity. By the beginning of the 20th century, the centuries-old technology of rockets had advanced to the point at which it was reasonable to consider their use to accelerate objects to a velocity sufficient to enter orbit around Earth and even to escape Earth’s gravity and travel away from the planet.
Tsiolkovsky
The first person to study in detail the use of rockets for spaceflight was the Russian schoolteacher and mathematician Konstantin Tsiolkovsky. In 1903 his article “Exploration of Cosmic Space by Means of Reaction Devices” laid out many of the principles of spaceflight. Up to his death in 1935, Tsiolkovsky continued to publish sophisticated studies on the theoretical aspects of spaceflight. He never complemented his writings with practical experiments in rocketry, but his work greatly influenced later space and rocket research in the Soviet Union and Europe.
Goddard
In the United States, Robert Hutchings Goddard became interested in space exploration after reading works such as The War of the Worlds. Even as a young man, he dedicated himself to working on spaceflight. In his 1904 high-school graduation speech, he stated that “it is difficult to say what is impossible, for the dream of yesterday is the hope of today and the reality of tomorrow.” Goddard received his first two patents for rocket technology in 1914, and, with funding from the Smithsonian Institution, he published a theoretical treatise, A Method of Reaching Extreme Altitudes, in 1919. Goddard’s claim that rockets could be used to send objects as far as the Moon was widely ridiculed in the public press, including The New York Times (which published a retraction on July 17, 1969, the day after the launch of the first crewed mission to the Moon). Thereafter, the already shy Goddard conducted much of his work in secret, preferring to patent rather than publish his results. This approach limited his influence on the development of American rocketry, although early rocket developers in Germany took notice of his work.
In the 1920s, as a professor of physics at Clark University in Worcester, Massachusetts, Goddard began to experiment with liquid-fueled rockets. His first rocket, launched in Auburn, Massachusetts, on March 16, 1926, rose 12.5 metres (41 feet) and traveled 56 metres (184 feet) from its launching place. The noisy character of his experiments made it difficult for Goddard to continue work in Massachusetts. With support from aviator Charles A. Lindbergh and financial assistance from the philanthropic Daniel Guggenheim Fund for the Promotion of Aeronautics, he moved to Roswell, New Mexico, where from 1930 to 1941 he built engines and launched rockets of increasing complexity.
Oberth
The third widely recognized pioneer of rocketry, Hermann Oberth, was by birth a Romanian but by nationality a German. Reading Verne’s From the Earth to the Moon as a youth inspired him to study the requirements for interplanetary travel. Oberth’s 1922 doctoral dissertation on rocket-powered flight was rejected by the University of Heidelberg for being too speculative, but it became the basis for his classic 1923 book Die Rakete zu den Planetenräumen (“The Rocket into Interplanetary Space”). The work explained the mathematical theory of rocketry, applied the theory to rocket design, and discussed the possibility of constructing space stations and of traveling to other planets.
In 1929 Oberth published a second influential book, Wege zur Raumschiffahrt (Ways to Spaceflight). His works led to the creation of a number of rocket clubs in Germany as enthusiasts tried to turn Oberth’s ideas into practical devices. The most important of these groups historically was the Verein für Raumschiffahrt (VfR; “Society for Spaceship Travel”), which had as a member the young Wernher von Braun. Although Oberth’s work was crucial in stimulating the development of rocketry in Germany, he himself had only a limited role in that development. Alone among the rocket pioneers, Oberth lived to see his ideas become reality: he was Braun’s guest at the July 16, 1969, launch of Apollo 11.
Other space pioneers
Although Tsiolkovsky, Goddard, and Oberth are recognized as the most influential of the first-generation space pioneers, others made contributions in the early decades of the 20th century. For example, the Frenchman Robert Esnault-Pelterie began work on the theoretical aspects of spaceflight as early as 1907 and subsequently published several major books on the topic. He, like Tsiolkovsky in the Soviet Union and Oberth in Germany, was an effective publicist regarding the potential of space exploration. In Austria, Eugen Sänger worked on rocket engines and in the late 1920s proposed developing a “rocket plane” that could reach a speed exceeding 10,000 km (more than 6,000 miles) per hour and an altitude of more than 65 km (40 miles). Interested in Sänger’s work, Nazi Germany in 1936 invited him to continue his investigations in that country.