Distance measurement
Electroacoustic transducers, mentioned in the section Speed measurement, measure the time that elapses between the transmission of a sharp acoustic “ping” from the keel of a ship and the return of the echo from the sea bottom. A radar altimeter similarly measures the distance between an aircraft and the ground by timing the reflection of short pulses of radio waves. A more common form of radio altimeter, better suited for measuring rate of change of altitude, transmits waves continuously and derives the height from the phase difference between the transmitted signal and that reflected from the ground. An observed phase difference is, in fact, consistent with a large set of discrete altitudes, but in practice such radio altimeters are used in connection with instrument landing systems for measuring altitude and rate of descent during the last few seconds before touchdown. At this stage, the lowest altitude consistent with the observed phase difference is the correct one. When the aircraft reaches a height of about 65 feet (20 metres), the landing system initiates a programmed reduction in rate of descent to ensure a firm but safe touchdown.
In the usage of navigation, distance-measuring equipment (DME) denotes a specific system, defined by internationally accepted standards. Aircraft fitted with DME transmit radio pulses at one of 126 designated frequencies; arrival of these pulses at a DME beacon on the ground causes the beacon—after a 50-microsecond delay—to transmit responding pulses at another frequency. The time elapsing between the aircraft’s transmission and its reception of the response is measured by a clock accurate to a few nanoseconds and converted into the distance, which is displayed in digital form. The position of the aircraft can be determined by combining the distance indicated by the DME with the direction from a VOR beacon at the same site as the DME beacon. Alternatively, position can be established by triangulation, using the distances between the airplane and two well-separated DME beacons.
Position hyperbolas
If a gun at position M in the hyperbola, gun S would be heard one second earlier than gun M. At a craft 2,200 feet closer to gun M, that gun would be heard two seconds before gun S, and the craft would lie on EF. Hence, by timing the interval to the nearest second, it is possible to determine on which hyperbola the observer is located; knowledge of which gun was fired first makes it possible to choose between the two branches.
were fired, a listener 1,100 feet (335 metres) away in any direction—that is, anywhere on the smallest circle centred at M—would hear the sound one second later; a listener 2,200 feet (670 metres) away, on the second circle, two seconds later; and so on. If guns at M and S were fired simultaneously, a listener anywhere on AB, equidistant from M and S, would hear them at the same time. On a craft closer to one gun than the other, the sound of the nearer gun would be detected first. If gun M were heard one second before gun S, the craft would lie on CD, one of the two branches of a hyperbola; at a craft on C′D′, the other branch of the sameIn some radio navigation systems, such as loran, the firing of guns is replaced by radio transmissions. A family of hyperbolas as shown in the may be printed on a chart. A second family of hyperbolas, referring to a second pair of stations, can be printed on the same chart; the position of a craft is determined by the unique intersection of two curves. In radio systems, one of the two stations in a pair (the primary) controls the other (the secondary) to ensure accurate synchronization of the signals. In some systems, two or three secondaries are distributed around a single primary station, and two or three families of hyperbolas are printed on the appropriate chart.
Loran in its original form (now called Loran-A) was introduced during World War II; it operated at frequencies near 2 megahertz, but interference with and by other services and unreliable performance at night and over land led to its replacement by Loran-C. Loran-C transmitters operate at frequencies of 90 to 110 kilohertz, and the signals are useful at distances of 1,800 nautical miles or more.
Decca, named for the British company that introduced it in 1946, is a hyperbolic system related to loran. Its primary and secondary transmitters broadcast different harmonics of a common frequency as continuous waves, rather than pulses. The hyperbolic position lines for any pair of transmitters are determined by the phase difference between the signals received, rather than the difference in arrival times of pulses. This arrangement provides a remarkably accurate and reliable system covering a range of 100–300 miles (160–480 km) from the primary station. Decca equipment is widely installed on ships and enjoys particular favour among fishermen, who can use it to return to specific shoals with great precision. Aircraft installations are less common than those of VOR/DME, the internationally accepted system for position finding. Decca is very well suited to navigation of helicopters, however, which usually operate at altitudes well below those at which VOR/DME is most effective.
Edward W. Anderson S.S.D. Jones Tom S. LogsdonImproved compasses
In the early days of aviation, it was soon learned that a liquid-filled mariner’s compass could not operate satisfactorily in a rapidly accelerating and sharply turning aircraft. Spring-mounted bowls and cards of extremely small diameter alleviated the problem, but tilting still occurred, bringing the system frequently under the influence of the vertical component of the Earth’s magnetic field and causing erroneous readings. The most important of such effects, called northerly turning error, caused the compass to indicate a greater or smaller angle than was actually being turned through. Other problems were the difficulty of obtaining stable magnetic conditions in the cockpit, with its array of metal and electrical equipment, and the need for the compass reading to be fed to other navigational aids. In the end, the direct-reading magnetic compass was reduced to a secondary role, its place being taken for most purposes by the gyromagnetic compass (see below).
The gyromagnetic compass
The errors that occur in aircraft and small, fast vessels during alterations of course or speed can be avoided by mounting the compass on a platform kept horizontal by a gyroscope. The directive element must be nonpendulous. The vertical pin supporting the compass needle can be pivoted at both ends, or an inductor element can be employed. In one such arrangement, a saturable-inductor compass (so named because of its use of materials that can be readily induced to carry a maximum magnetic flow, or magnetic saturation) is mounted on a gyroscope, but this is not always convenient from the point of view of size and weight.
Another system has a means of comparison between the gyroscope heading and that of the magnetic element. The gyroscope maintains a specific directional line in space with a possible error caused by drift of two or three degrees in each half hour that the gyroscope is left free. The utility of this instrument may appear to be very limited, but it happens to complement the magnetic compass very well. By itself, neither is satisfactory as a directional reference, but a combination of the directional gyroscope with a magnetic compass gives the pilot complete and stable directional information. The relatively slow drift of the directional gyroscope from its heading may be corrected manually from time to time when the airplane is in level and straight flight.
The gyrocompass
The direction a gyrocompass points is independent of the magnetic field of the Earth and depends upon the properties of the gyroscope and upon the rotation of the Earth. The axis of a free gyroscope will describe a circle around the pole of the heavens. To convert it into a gyrocompass, a control must be introduced that, when the axis tilts, will operate to precess (turn) it toward the meridian. The case of the gyroscope is made pendulous, or a liquid is arranged to flow from side to side. Either will convert the path traced by the axis into an ellipse. By delaying the flow of the liquid or by making eccentric the point of action of the control, a damping factor is introduced that converts the ellipse into a spiral so that the gyrocompass eventually settles pointing true north (see ).
William Edward May John Lawrance Howard Tom S. LogsdonInstruments
The tactical management of a craft demands, for steering, continuous indication of heading and speed through the water or air and, for the propulsion system, information—either continuous or on demand—on engine speed, temperatures at critical regions, fuel flow, and fuel supply. In a modern aircraft, continuous monitoring by the crew of the numerous variables is impractical; instead, each instrument that indicates the value of a critical variable is designed so that any departure beyond specified limits is brought to the attention of the crew by warning lights, audible signals, or, in the particular case of airspeed, “stick shake”—that is, artificially induced vibration of the control column in the event that indicated airspeed falls close to stalling speed.
Rate of climb and, particularly, rate of descent must be indicated continuously because of their vital safety connotations. Rate of turn also is important in aircraft, and it is sometimes indicated in ships.
Airspeed is correctly indicated by the Pitot apparatus only if the air has the density typical at sea level at 59 °F (15 °C). Altitude has a major effect on air density, and temperature has a minor one; in modern aircraft, indicated airspeed, altitude, and temperature are combined by a computer that indicates true airspeed and Mach number. Similarly, the independently operating compass, artificial horizon (an instrument that shows the degree of pitch and roll), and other instruments have been integrated into a so-called attitude and heading reference system.
The combination of daylight-visible optical displays with systems for storage and retrieval of digital data simplifies the design of aircraft cockpits and ship bridges by allowing the presentation of essential information on demand, relieving the navigator of the task of interpreting the readings of numerous separate indicators.
S.S.D. Jones Tom S. LogsdonCollision avoidance
The avoid to prevent collision with another aircraft. In the figure the wind is replaced by the course and speed of the other craft drawn in the opposite direction. What was track and ground speed in the figure becomes the line of sight to the craft to be intercepted and the speed at which the two planes are approaching each other. If both planes maintain the speeds and directions indicated in the figure, a collision will occur.
illustrates the calculation of an airplane’s true ground velocity. Similar techniques can be used to calculate the course an airplane mustModern techniques are based on collision-avoidance theory, which states that, if a course is altered in a direction opposite to that in which the line of sight to another craft is changing, the miss distance will be increased. Thus, if a ship is apparently traveling across the bow to the left, the miss distance will be increased if the course is altered to the right. If the other ship is on the same course but moving ahead, the miss distance will be increased by slowing down. Traditional “rules of the road” at sea require two ships meeting head-on both to turn right. The turn has to be sharp to be effective and to make intentions clear. Aircraft, which are too small and fast for visual avoidance, depend on systematic separation of flight paths.