print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

The teeth are hard, white structures found in the mouth. Usually used for mastication, the teeth of different vertebrate species are sometimes specialized. The teeth of snakes, for example, are very thin and sharp and usually curve backward; they function in capturing prey but not in chewing, because snakes swallow their food whole. The teeth of carnivorous mammals, such as cats and dogs, are more pointed than those of primates, including humans; the canines are long, and the premolars lack flat grinding surfaces, being more adapted to cutting and shearing (often the more posterior molars are lost). On the other hand, herbivores such as cows and horses have very large, flat premolars and molars with complex ridges and cusps; the canines are often totally absent. Sharp pointed teeth, poorly adapted for chewing, generally characterize meat eaters such as snakes, dogs, and cats; and broad, flat teeth, well adapted for chewing, characterize herbivores. The differences in the shapes of teeth are functional adaptations. Few animals can digest cellulose, yet the plant cells used as food by herbivores are enclosed in cellulose cell walls that must be broken down before the cell contents can be exposed to the action of digestive enzymes. By contrast, the animal cells in meat are not encased in nondigestible matter and can be acted upon directly by digestive enzymes. Consequently, chewing is not so essential for carnivores as it is for herbivores. Humans, who are omnivores (eaters of plants and animal tissue), have teeth that belong, functionally and structurally, somewhere between the extremes of specialization attained by the teeth of carnivores and herbivores.

Each tooth consists of a crown and one or more roots. The crown is the functional part of the tooth that is visible above the gum. The root is the unseen portion that supports and fastens the tooth in the jawbone. The shapes of the crowns and the roots vary in different parts of the mouth and from one animal to another. The teeth on one side of the jaw are essentially a mirror image of those located on the opposite side. The upper teeth differ from the lower and are complementary to them. Humans normally have two sets of teeth during their lifetime. The first set, known as the deciduous, milk, or primary dentition, is acquired gradually between the ages of six months and two years. As the jaws grow and expand, these teeth are replaced one by one by the teeth of the secondary set. There are five deciduous teeth and eight permanent teeth in each quarter of the mouth, resulting in a total of 32 permanent teeth to succeed the 20 deciduous ones.

The tongue

The tongue, a muscular organ located on the floor of the mouth, is an extremely mobile structure and is an important accessory organ in such motor functions as speech, chewing, and swallowing. In conjunction with the cheeks, it is able to guide and maintain food between the upper and lower teeth until mastication is complete. The motility of the tongue aids in creating a negative pressure within the oral cavity and thus enables infants to suckle. Especially important as a peripheral sense organ, the tongue contains groups of specialized epithelial cells, known as taste buds, that carry stimuli from the oral cavity to the central nervous system. Furthermore, the tongue’s glands produce some of the saliva necessary for swallowing.

The tongue consists of a mass of interwoven striated (striped) muscles interspersed with fat. The mucous membrane that covers the tongue varies in different regions. The tongue is attached to the lower jaw, the hyoid bone (a U-shaped bone between the lower jaw and the larynx), the skull, the soft palate, and the pharynx by its extrinsic muscles. It is bound to the floor of the mouth and to the epiglottis (a plate of cartilage that serves as a lid for the larynx) by folds of mucous membrane.